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AN ITERATIVE ALGORITHM FOR SPLIT EQUALITY FIXED POINT
PROBLEM OF MULTIVALUED LIPSCHITZIAN
QUASI-PSEUDOCONTRACTIVE MAPPINGS WITH APPLICATIONS

U. S. JIMY* AND D. I. IGBOKWE?

ABSTRACT. We introduce an iterative algorithm for split equality fixed point and null point
problem for multivalued Lipschitzian quasi-pseudocontractive mappings and maximal mono-
tone operators which includes split equality feasibility problem, split equality problem, Split
equality null point problem and other problem related to fixed point problems. Moreover, we
establish a strong convergence results in real Hilbert spaces under some suitable conditions
and reduce our main result to above-mentioned problems. Finally, we apply the study to split
equality feasibility problem (SEFP), split equality equilibrium problem (SEEP), split equality
variational inequality problem (SEVIP) and split equality optimization problem (SEOP). The

results presented in the paper extend and improve many recent results.

1. INTRODUCTION

Let C and @ be closed and convex subsets of real Hilbert spaces H; and Hs, respectively.
Consider two bounded linear operators A : H; — Hs and B : Hy — Hj3, where Hjy is another
real Hilbert space. The split equality feasibility problem consists of finding two points z € C
and y € @ such that Ar = By. Split equality fixed problem allows asymmetric and partial
relations between the variables x and y, and covers many problems such as decomposition
methods for partial differential equations, applications in game theory, and intensity-modulated
radiation therapy. These broad applications caught the attention of many researchers, and
eventually leading to various research output for the split equality feasibility problem, see for
example |1, 2,22, 32-31,30].

Let T : C — 2¢ be a multivalued mapping. An element p € C is called a fixed point of T
if p € T'p. The set of all fixed points of 7" is denoted by F(T). We say that T satisfies the
endpoint condition if T'p = p for all p € F(T).

A subset D of C'is said to be proximal if for each x € C, there exists y € D such that

(1) |z =yl = d(z, D).
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We denote by CB(C), K(C), and P(C') the families of all nonempty closed bounded subsets of
C', nonempty compact subsets of C', and nonempty proximal bounded subsets of C, respectively.
The Pompeiu-Hausdorff metric on C'B(C) is defined by

(2) H(A, B) = max { supd(a, B),sup d(b, A)}

a€A beB

for all A, B € CB(C).
Lemma 1.1( [28]) Let K be a normed space. Let T : K — P(K) be a multivalued mapping
and Pr(z) ={y € Tx : ||z — y|| = d(x,Tz)}. Then the following are equivalent:

(i) x € Tz,
(i) Prx ={z}
(i) = € F(Pr)
moreover F(T) = F(Pr).
Definition 1.1. Let K be a nonempty closed convex subset of H.
A multivalued mapping T : K — CB(K) is said to be nonexpansive if

(3) H(Tz,Ty) < ||z =yl forall z,y € K
A multivalued mapping T : K — CB(K) is said to be quasi-nonexpansive if F'(T) # ) and
(4) H(Tx,Tp) < ||z —p|| forall x € K,pe F(T)

A multivalued mapping T : K — CB(K) is said to be k—strickly pseudocontractive ( [/7])
if there exists k € (0,1) such that for all x,y € D(T) one has

5) H(T2, Ty) < o — gl + bz —u— (y — 0)|* Yu e Tz,0 €Ty
A multivalued mapping T : K — CB(K) is said to be pseudocontractive ( [17]) if
(©) HY (T2, Ty) < o — gl + |z —u— (y— o) Vue Tx,0eTy

A multivalued mapping T : K — CB(K) is said to be demicontractive [/8, 20] if F(T) # 0
and there exists k € [0,1) such that

(7) H*(Tx,Tp) < ||z — p||* + kd*(x, Tx) for all x € K,p € F(T)

A multivalued mapping T : K — CB(K) is said to be quasi-pseudocontractive ( [20]) if
F(T) # 0 such that

(8) H*(Tz,Tp) < ||z — p|*> + d(x, Tx) for all z € K,p € F(T)

The following example shows that the class of demicontractive mapping is properly contained
in the class of quasi-pseudocontractive mappings (see [20]).
Example 1.3 Let X = R (the reals with the usual metric). Define T : R — 2% by

_— { [—V22,0], € 0,00),
[0, —v22] € (—00,0).
Then F(T) = {0}. For each x € (—00,0) Uz € (0, 00),

(9)

H*(Tz,T0) = |V2z—0?=2z—0%=|z—0+]|z -0,
d*(z,Tx) = |v—TO0*= |z — 0]
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therefore,
H*(Tz,T0) = |z — 0> + |z — 0> = |z —0)*+d*(z,Tx)
(10) > |z — 0 + kd*(z, Tz),

for all z € R and Vk € (0,1). Therefore T is quasi pseudocontractive.

Example 1.4 Let X be a normed space. suppose T is multivalued mapping such that F(T') # ()
and Pr is pseudocontractive-type mapping, then Pr is quasi pseudocontractive.

Example 1.5 Let X be a normed space. Let T': D(T) € X — P(X) be a multivalued
pseudocontractive-type with nonempty fixed point set. Suppose Tp = {p} for all p € F(T),
then for any z € D(T), p € F(T) and u € Tz with || — u|| = d(x, T'z) we have

(11) H*(Tw,Tp) = v — p[* + o — u* = [z — p + &* (2, Tx)

Remark 1.6 We easily observe that the class of quasi pseudocontractive operators includes
the class of operators defined in equations (?77) - (77).

Let Hy and H, be real Hilbert spaces and C and Q be nonempty closed and convex subsets
of Hy and H; respectively. The split feasibility problem (SFP) is formulated as: to find

(12) x* € C such that Az* € Q

where A : Hy — H, is a bounded linear operator. In 1994, Censor and Elfving [9] first
introduced the SFP in finite-dimensional Hilbert spaces for modeling inverse problems which
arise fromphase retrievals and in medical image reconstruction |7]. It has been found that the
SEFP can also be used in various disciplines such as image restoration, computer tomography,
and radiation therapy treatment planning [3, 10, 11]. The SFP in an infinite-dimensional real
Hilbert space can be found in |7, 10,12, 13,31,33,30].

Moudafi [23-25] introduced the following split equality feasibility problem (SEFP) to find:

(13) x € C,y € Q such that Az = By,

where A : Hy — H3 and B : Hy, — Hj3 are two bounded linear operators. Obviously, if B = I
(identity mapping on Hy) and Hz = Hs, then (13) reduces to (12).
In order to solve split equality feasibility problem (13), Moudafi [23] introduced the following
simultaneous iterative method:
(14> Tn+1 PC’(xn - '7A*(Axn - Byn))
Ynt1 = Polyn + BB*(Az, — Byy))

and under suitable conditions, he proved the weak convergence of the sequence {(z,,y,)} to a

n € N.

solution of (13) in Hilbert spaces.

In order to avoid using the projection, recently, Moudafi [13] introduced and studied the
following problem: Let T' : Hy — H; and S : Hy — H, be nonlinear operators such that
F(T) # 0 and F(S) # 0, where F(T) and F(S) denote the sets of fixed points of 7" and S
respectively. If C = F(T) and Q = F(S), then split equality feasibility problem (13) reduces
to

(15) z € Fiz(T),y € Fiz(s) such that Ax = By,

which is called a split equality fixed point problem (SEFPP).
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Moudafi [24] proposed the following iterative algorithm for finding a solution of SEFPP (15):

(16) Tnt1 T(wn - PYnA* (AiBn - Byn))

n € N.
Ynt+1 = S(?Jn + BnB*(Axn - Byn))

He also studied the weak convergence of the sequences generated by scheme (16) under the
condition that 7" and S are firmly quasi-nonexpansive mappings.

Che and Li [16] proposed the following iterative algorithm for finding a solution of SEFPP
(13):

U, = Ty — VA (Azx, — By,)
= 1— T
(17) Topt = Gt k(L =a)Tu

Yn+1 = Qplp + (1 - an)Svn

They also established the weak convergence of the scheme (17) under the condition that the
operators T' and S are quasi-nonexpansive mappings.

Chang, Wang and Qin [11] proposed the following iterative algorithm for finding a solution
of SEFPP (13):

Uy, = Ty — VA (Az, — By,)
(18) Topr =yt (1= an)(L=OI +ET((1 =l +0T))un cN.
Un = Yo+ BuB*(Az,, — By,)

Ynir = oy + (1= an)((1 = I +ES((1 = n)I +1S5))on

They established the weak convergence of the scheme (18) under the condition that the opera-
tors T' and S are quasi-pseudocontractive mappings.

Boikanyo and Zegeye [6] proposed the following iterative algorithm for finding a solution of
SEFPP (13):

u, = Polr, — A" (Az, — By,)]
Tpa1 ayu+ (1 —a,) (1= +T((1 —n) +nT))uy,
1) U = Polyn— 1B (Azy — Byn) e
Yor1 = v+ (1 —a,)((1 =TI +ES((1 =)l +nS))v,

They also established the strong convergence of the scheme (19) under the condition that the
operators T and S are quasi-pseudocontractive mappings.

Motivated by the above works, we propose a new iterative algorithm called Halpern-type
algorithm for the class of multivalue Lipschitzian quasi-pseudo-contractive mappings and max-
imal monotone operators that always converge strongly to the solution of the split equality
fixed point and null point problem (SEFPNPP). It is known that the class of multivalue Lips-
chitzian quasi-pseudo-contractive mappings is more general than the class of quasi-contractive
mappings, directed mappings, and demicontractive mappings. Moreover, strong convergence is
more desirable than weak convergence and we obtain our result without additional conditions
on the operators. Also, the implementation of the iterative algorithm does not require the cal-
culation or estimation of the operator norms ||A|| and ||B|| which may at times be as difficult
as solving the original problem itself. Hence, our results provide a unified framework for the

study of the split equality fixed point and null point problem.
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2. PRELIMINARIES

Let H be a real Hilbert space with inner product (-, -) and norm ||-||, and let C' be a nonempty
closed convex subset of H. The notation x,, — x denotes that the sequence {z,} converges
strongly to x. Similarly, z,, — = will mean weak convergence.

For any « € H, there exists a unique point Pox € C' such that
(20) |z — Pox| < |lz —yl|, Vy € C

P¢ is called the metric projection of H onto C. Note that Pc is a nonexpansive mapping of H
onto C. For x € H and z € C, we have

(21) z=PFPox < (z—y,x—2z) >0, for every y € C.

In [6], it was shown that if Hy, H, are real Hilbert spaces, then H := H; x H is also a real

Hilbert space with inner product

<($17?J1)a (952,92» = (901,$2> + <yhy2>7 v(fflayl); ($2,y2) € Hy x Hy
such that
(22) (Tn, yn) — (2, y") implies that z, — z* and y, — y"

Moreover, if C' is a nonempty, closed, and convex subset of H, (u,v) € H and (u*,v*) =
Pe(u,v), then from inequality (21), we obtain that

(23) ((u*,0") — (z,y), (u,v) — (u*,v*)) >0, for every y € C, Y(x,y) € H.
Given a positive constant o, a mapping A : C' — H is said to be a—inverse strongly monotone
if
(24) (x —y, Az — Ay) > a||Ax — Ay||* ¥V x,y € C.
For % > 0, a mapping A on H is called ¥—strongly monotone if
(25) (v —y, Az — Ay) >F|le —y||* Va,ye H
Taking L > 0, a mapping A on H is said to be L—Lipschitzian continuous if

(26) Az — Ay[| < Ljjz —yl|, V 2,y € H.

It can be seen that A is Jz—inverse strongly monotone whenever A is j—strongly monotone
and L—Lipschitzian continuous.
Let B be a mapping of H into 2. The effective domain of B is denoted by dom(B), that

is, dom(B) = {x € H : Bx # (}. A multivalued mapping B is said to be monotone if
(27) (x —y,u—v) >0V 2,y € dom(B), u € Bz, v € By

A monotone operator B is said to be maximal if its graph is not properly contained in the
graph of any other monotone operator. For a maximal monotone operator B on H and r > 0,

the operator
(28) J,={I+rB)"': H— dom(B)

is called the resolvent of B for r. It is known that J,. is firmly nonexpansive.
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An operator h is called averaged (see [3]) if there exists a nonexpansive operator N : D — H
and a number « € (0, 1) such that

(29) h=(1—-a)+aN
where [ is the identity operator.

Definition 2.1. Let T : H — H, I — T 1s called demiclosed at zero, if for any sequence
{z,} C H and x € H, we have z,, — z and (I — T)x,, — 0, then x € Fix(T).

Lemma 2.1. [77] Let H be a real Hilbert space, C' a closed convex subset of H. LetT : C' — C
be a continuous pseudocontractive mapping. Then

(i) F(T) is a closed convex subset of C,

(i1) (I - T) is demiclosed at zero.

Theorem 2.1. [21] Let T : H — H be a a—atlracting quasi-nonexpansive operator where
a>0andS: H— H a strongly quasi-nonexpansive operator. Suppose that F(T)N F(S) # (.
Then

(i) Both T'S and ST are strongly quasi-nonexpansive,

(i) If I =T and I — S are demiclosed at zero, then I — TS and I — ST are also demiclosed at
Z€ero.

Lemma 2.2. [/5] Let T : H — H be a strictly quasi-nonexpansive operator and S : H — H
a quasi-nonexpansive operator. Suppose that F(T) N F(S) # 0. Then F(TS) = F(ST) =
F(T)NF(S).

Lemma 2.3. [70]. Let {s,} be a sequence of nonnegative real numbers satisfying
(30) Sl < (1 —ap)Sn + anfy + Yo, n >0

where {an}, {Bn} and {v,} satisfy the following conditions:

i) {an} C[0,1], 3 an = oo,
n=1
(ii) limsup 5, <0,

n—oo
(iil) v, >0, > < 0.
n=1
Then lim s, = 0.
n—oo

Lemma 2.4. Let H be a Hilbert space with inner product (-} and norm || respectively. Then
Ve,y € H,

(B1) (i) Nte+ @ =tyll* =tll® + 1 = )llyl* — (1 = )]z —yll*, vt € [0,1].

(32) (i) llz—yl* = |zI*=2(z,y) + lyl?
3. MAIN RESULTS

Theorem 3.1. Let Hy and H, be real Hilbert spaces. Let By and By be mazimal mono-
tone operators of Hy into 21 and H, into 22 and Jfl and sz be resolvents of By and
By, respectively for X\ > 0. Let A : HH — Hjz and B : Hy — Hjs be two bounded linear
operators, and S : Hy — CB(Hy) be Multivalued Lipschitzian quasi-pseudocontractive and
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T : Hy — CB(Hy) be Multivalued Lipschitzian quasi-pseudocontractive such that (I — S)
and (I —T) are demiclosed at zero. If the solution set of SEFPNPP is nonempty (that is,
I'={x € F(S)N B;'0,y € F(T) N B;'0, Az,, = By,} # ). Suppose that o, v, € H, and
Yo, Y1 € Hs are chosen arbitrarily. Let {(z,,y,)} be the iterative sequence generated by

Tp+1 = anO + ( - Bn)un
Up, ApTyp + (1 - an)nn
Yn+1 = ﬁnyo + (1 - Bn)vn
Un, = QpYn + (1 - O‘n)ﬂn

n>1

(33)

where n, € SJP (x, — yA*(Ax, — Byy)), pin € TJP (y, + yvB*(Az, — By,)), the parameter v
and the sequences {a,}, {Bn} C (0,1) satisfying the conditions: (i) v € (O,min (HEHQ’ ”g”2>>,
(id) D07y, < 00, (i) lim B, =0 and (iv) > B, = 0o. Then,

n—oo

(a) lim &,(p,q) exists for each p,q € T,
n—,oo
(b) lim Hxn - 7771” = lim Hyn - :un” =0,
n—oo n—o0
(c) {xn}32, converges strongly to p,q € T
Proof : We use Lemma 2.4 (see also [20]) and the fact that S and T" are L—Lipschitzians.
(34) [tz + (1 = t)y[* = tll=|* + (1 = )yl — 1 = )|z — y]|*

which holds Vx,y € Hy. Let (p,q) € ', then using (33) and (34), we have

lzns = pI* = l1Bazo + (1 = Ba)un — pl®
= [Bu(@o = p) + (1 = Ba) (un — p)|”
(35) = Ballro = plI* + (1 = Ba)llun — plI* = Bul(l = Bullun — o]
lun = pl* = oz + (1 = o) (ma — p)|I*
= Non(zn —p) + (1 = o) (i — p) |
= anllzn —pl* + (1 = )l — plI*
(36) —an(1 = ) I — a1

Substitute equation (36) into (35) to obtain

2011 — plI* = Ballwo — oI + (1 = Bu){ewllzn — plI?
(1= ag)|nn = plI* = (1 = |, — = [*}
—Bn(1 = Bullyn — wol?
= Bullzo — plI* + an(1 = B)|lwn — plI?
+(1 = an) (1 = Bl — plI®
—ap(1 = ) (1 = )| — 2a?
(37) —Bn(1 = Bl — o[,
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Since S is quasi pseudocontractive, we have

H* (ST (w0 = yA (A2 — Bya)), p) < |3 (0 — yA*(Azn — Bya)) — pl?
+d*(STP (x, — yA* (A, — By,)), JP (x, — YA* (A, — By,)))

+d* (ST (x, — yA* (A, — Byn)), JL (2, — YA* (A, — By,)))
<l = plI? + 4[| A" (A2 = Bya)|1? = 29(wn — p, A*(Az,, — Byn))
+d2<S‘])]\31 (zn —vA*(Az, — Byn)), Jfl (zn — yA*(Ax, — Byn)))
= “xn - p”2 + '72||A*<A‘Tn - Byn)||2 - 2’7<Axn — Ap, Az, — Byn>
(38) +d2(8‘]))\91 (xn — yA*(Azy, — Byy)), Jfl (zn — yA* (A, — Byn)))
|A*(Az,, — Byn)H2 = (A"(Az, — Byn), A"(Az, — Byn))
= (AA*(Ax, — By,), Az, — Byy,)
(39) = ||AP’[|Az,, — Byl
dz(s‘]fl(xn — A (Az, — Byy)), Jfl(xn — A" (Az, — By,)))
(40) = |nn = S (@0 —vA*(Azy, — By, |

e — IV (@ — YA (A2 — By)|| = 1 —p +p — J{ (2, — vA* (A, — By,) ||

< g = pll + 175 (20 — vA*(Az,, — Byn) — p
< g = pll + 175 (20 — vA*(Az,, — Byn) — p
< Al =2l + llzn — pll + Y[[A"(Az, — By,)||
(41) < nn = @oll + llzn — 2ol + 2[|2s — pll + 7| A (Azy, — By,)||

Substitute equation (39) into (41), we have

||77n - J)]\gl(xn_’yA*(Amn_Byn)H

(42) 17 = ol + ll2n — ol + 2[lzn — pll + Y[[Al[[[ Az, — Bys||

IN

therefore,

||77n - J)\Bl(xn_VA*(Axn_BynMQ

< B +1lADImn — ol
5
+(5 +lADln = 2ol
5
+(5 + 14D, —pl?

(43) +BYIIAI + AP | Az — Bya|l*
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Substitute equations (42) and (43) into (38) to obtain
(ST @y — YA (Azy — Byn)), JY(@n — yA*(Azy — Byn)))
< lzn = pl* + 2?1 Al*| Azn — Byal®
~2y(Azy, — Ap, Azy, — Byn) + (3 + [ Al 11 — o]|?

)
+(5

5 2
+(5 1l ADzn — pll

+3yI Al + 221 A% Azy — Byal®

+ ANz — ol

7
= (5 +20Al)zn — ol
+@+ 1A — ol

5
+(5 + A Izn = ol

+ByI Al + 221 A% Azy — Byl®
(44) —2v(Ax,, — Ap, Az, — Byy)
Substitute equation (44) into (37) to obtain

heves = I < Bl = P + 0001 Bl — oI
HU= an)(1 = B + 22141 e I
6+ 1AD I ol
£+ 14Dl — 2ol
HEYIAL+ 1A | Az, — Byl

—2v(Ax,, — Ap, Az, — Byp)}
—an (L = an)(L = Ba)llnn — za?
~Bn(1 = Ballun — xo]?

= Bullzo = pl* + an(l = Ba) zn — pII?

H1= an)(1 = B) (5 + 221 Al — p?

H= @)1~ 6)(3 + A Al — 0l
H1 = an) (1= B + Al — ol

HU= an)(1 = B)BAL+ 2141 Az — By
—2(1 — ap)(1 = Bp)v(Azxy, — Ap, Az, — Byy)

—an (1 —an)(1 = Ba)lnn — anQ
(45) —Bn(1 = Bullun — 2ol

un — xOHQ = [Jann + (1 — an)nn — 370H2
[l (20 — x0) + (1 = @) (N — o) ||
| — 20l|* + (1 — ) 1 — o ?

(46> _an(l _O‘n)Hnn_anz'

IA
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Substitute equation (46) into (45) to obtain

lzner = pI* < Bullwo — pII* + (L = Bp)l|lzn — pl?

+(1—an)(1 - 6n)( + 29[| A |z — pl1?

+(1—an)(1 - 5n)(3+’7||AH)||77n—$0H2

+(1—an)(1 - ﬂn)( + [l Al l|n — o]

+(1—an)(1 - Bn)(3v||A|| + 72| AlP)[| Az, — Bya|?
—2(1 = o) (1 = Bu)y(Azn — Ap, Ay — Bypn)

—an(1 = o) (1 = Bp)llmn — 2|
—Ba(1 = Budanllzn — wol|* + (1 = )7 — 2o
—0u(1 = o)l — @1}
ﬂn||$o—p||2+an(1 Ba)llzn — plI*
+(1 = ) (1 = Ba) (5 + 291 A |2 — pII”
+(1 = ) (1 = B) (3 + VI AID 170 — 2o

)

)

(2
)1~ 63
HI= a1 = 8 + Dl — ol

H = an) (1= B)BAN + 7 AP | Az, — By
—2(1 — ayp)(1 = Bp)v(Az, — Ap, Az,, — By,,)
(1= ) (1 B} 1 —
a1~ Bl — 2ol — 81— B)(1 — )y — ]
(L= 001 = ) =
(1= B) + (1= 0)(1 = B (& + 23| A —
HL— a1~ B)EIAL + AP Az, — Byl
—2(1 — ap) (1 = Bp)v(Az, — Ap, Az,, — By,,)
HlanBu(l = B)(1 = ) — (1 = B)(1 = )l — 2l
(1= Bl — (1= )5 + 1 AD ]l — ol

(1= @)[Ba — B+ ANA I, — ol

1= Bt (L= )1 = B + 2] Al —

H= an) (1= B)BAN + 7 AP | Az, — By |
—2(1 — ay)(1 = Bu)y(Ax, — Ap, Az,, — By,)
(1= B (1 = o)l —
HO= B[~ )+ AN — Bl — 0]
HL= B2) (1= @) 3+ AN — Bul 1. — ol

|
—~
—_
|
=
3
~
—_
|
Q
S
~
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g — all* = 1Bayo + (1 = Bu)vw — pl|”
= 1Bu(yo — @) + (1 = Bu) (vn — )|
= Ballyo — plI* + (1 = Bo)lJvn — pl®

(48) —Bn(1 = Bullon — wol|*

lva = all* = llomyn + (1 — ) (1t — @)|I”

= Jlan(yn — @) + (1 = o) (n — 9)|1?
= llyn —all + (1 = o) |t — gl
(49) —an (1 — )| ftn — yn||2'

Substitute equation (49) into (48) to obtain

[Yni1 = all* = Buallvo — plI” + (1 = Bu){nllyn — all* + (1 — )l — al?
—an(1 = an)llitn = yull*} = Bu(L = Bullyn — voll”
= Bullyo — alI* + (1 = Ba)lyn — all”
(1 = ) (1 = BT I3 (yn +vB*(Azy, — Bya)) — pl®
—an(1 = an)(1 = B)IT T (yo + 7B (Azn — Bya)) — yal®
(50) —Bu(1 = Bullvn — woll*
Since T' is quasi pseudocontractive, we have
H*(TJ (yn + ¥ B*(Azn — Byn)), @) < 132 (Y +¥B*(Azn — Bya)) — q”
+d* (T2 (yo + ¥ B* (A2 — Bya)), J\* (Y + 7B (A, — Byn)))

< Nyn — g +yB*(Az, — By,))|?
+Hﬂn - J)]\SQ(yn + ’VB*(Axn - Byn))H2
< Nlyn — all* + 711 B*(Azn — Bya)|I* + 27(yn — ¢, B*(Azy — Byy))
i — I (Yo + 7B (A, — Bya))|”
= |lyn — > + ¥’ B*(Az,, — Byn)|I* + 27(Byn — Bq, Az, — Byy)
(51) Fllpn — T2 (yn + v B* (Azy, — By)) ||
|B*(Az, — Byn)|I” = (B*(Aw, — Byy), B*(Az, — Byn))
= (BB*(Ax, — By,), Az, — Byy,)
(52) = | BI*|| Az, — Byal®
e — Y2 (Yo + ¥B* (A, — By,)|
= |pta —q+q— J{ (yn +7B*(Az, — By,)||
< o — qll + 172 (yn + ¥B*(Azy — Byn) — q|
< e — gl + 177 (yn + ¥B*(Azy — Byn) — pl|
(53) < Nptn = nll 4 2llyn — all + 71 B*(Azn, — Byn)||
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Substitute equation (52) into (53), we have
it = T2y + ¥ B (Azy, — By)|
(54) < lem = woll + llym = ol + 2llyn — all + (I Bll| Azn — Byal
therefore,
it = T (g + 7B (A, — Byn)|I?

5
< B+ABDIE = yoll* + (5 + B[y — vol”

5
(55) +(5 + MBIy — all* + GYIBIl + 1B [ Azy — Byl

2
Substitute equations (52) and (55) into (51) to obtain
HY(TJ(ya + B*(Azn = Bya) ) < llyn — dlI* + 22 B|*[| Az, — By
+27(Byy — Bq, Az, — Bya) + 3+~ BIDIB + 2l BIDIltn — woll?
FC B~ ol + (2 + 1B — P

+GYIBI + I BIIP) | Az — Byal?
= (@ + 2Dl — P + (3 + AN s — w0l
+(g + ANy = woll* + GYIBI + 21 BI*) | Azy — Byal®
(56) +2v(Ax,, — Ap, Az, — By,)
Substitute equation (56) into (50) to obtain

lynse1 — D> < Ballyo — gl + an(l — Bo)llym — qll?

HO = an) (1= B + 29 AD e — al?
HB+ 1A — 3ol
-H;+ﬂMmMn—%W
HBBI+ 2 IBID) Az, ~ Byl?

+2v(Ax, — Ap, Az, — By,)}
—an(1 = an)(1 = ) tn — gl
—Bu(1 = Balltn — 3o
= Ballyo — qll* + (1 = Bo)llyn — all?
HO= @)1= B+ 291 4Dl — al?
(1= an)(1 = BB+ Al — w0l
(1 - an)(1 - mﬂ+www%—WP
£(1 = an)(1 = B)GYIBI + 21 BI?) | Az, — Bya?
+2(1 — ) (1 = Bp)v(Ax, — Ap, Az, — Byy)
—an(1 = an)(1 = ) tn —
(57) —Ba(1 = Balltn — w0l

(
(
(2
(
)
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||U7L - yo”2 = ||anyn + (1 - O‘n):un - ||2

= [y — o) + (1 — ) (bt — v0) ||
(58) < llyn — voll* + (1 = )|l ftn — wolI> = (1 — )|l ptn — ynl|?

Substitute equation (58) into (57) to obtain

lyn+1 = all* < Ballyo — al® + an(1 = Bn)llyn — alf?
+(1 —apn)(1 = 5n)( + 291 AN [lyn — gl?
+(1—an)(1 - 5n)(3 + AN — ol
+(1 —an)(1— Bn)( + 1A yn = oll?
+(1 —an)(1 - ﬁn)(?WHBH +7°|BI*) | Azn — Byall?
+2(1 — an)(1 — Bu)v(Azx,, — Ap, Az, — Byy)

—an(1 = an) (1 = Bo)llttn — ynll®
—Bn(L = Bufanllyn — voll” + (1 — an) |l tn — yoll®
—an(1 = an)l|pn — ynl*}

= Ballvo — ql* + an(1 = Ba)llyn — ql?

+(1 = an)(1 = B2) (= + 27 BID|yn — I

(
B2
U= an)(1 = 5)(3 + B on — g0l
H1U= ) (1= B + B — 30
HU= an)(1 = 5) BB+ BI) Az — By
+2(1 — ap)(1 — Bn)y(Bxzyn — Bq, Ax,, — Byy,)

—an(1 = an) (1 = Bo) |t — ynll?
—Bn(1 = Bu)anllgn — voll” = Bu(1 = Ba)(1 = an)|ttn — volI?
B (1 = Ba) (1 — )| i — ||2
= [aa(1=8p) + (1 - a1 ﬁn>< + 29[ AN lym — all?
+(1 = o) (1= Bn) 3Bl + 7 HBII )| Az, — By, |
+2(1 — an)(1 = Bn)v(Byn — Bq, Azn, — Byn)
+lanBn(1 = Bn) (1 — an) — an(l = Bn) (1 = an)]l|pin — yaull?
—(1 = Bn)anfn — (1 - an><§ + By — voll?
—(1 = Ba)(1 = )[Bn — (3 +7I|B\|)Ilun — yo|®
= [1=Ba+(1—an)(l - ﬂnx + 29[ BDllyn — 4l
+(1 = an)(1 = Bn) (3] Bl ++°(| BII*) | Az, — Bya|?
+2(1 — ap)(1 = Bn)v(Byn — Bq, Ax,, — Byy,)
—an(1 = B)(1 = o) ||t — ynl®
+(1 = Ba)[(1 - an><§ + 1Bl = nBulllyn — vol®
(59) +(1 = Ba)(1 = an)[(B+IBI) = Balllitn — wol*.
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Zns1 = plI* + [ynts — gll?
<=+ (L= @)1= B+ 25| A — P
L= a1~ BYEIAL + AP Ar, — B
—2(1 — o) (1 = Bn)y(Azy — Ap, Az, — Byy)
(1 = 5201 — )l —
HO= B[~ 0) (3 + AN — a7 — 0]
#1801 = 0 (4141 = Bl — ol
1= B+ (L= @)L= B + 21 Bl —
H1— a1~ BIGIBI + 1B Az, — Bl
+2(1 — an)(1 = Bn)v(Byn — Bq, Az, — Byy)
o= AP = o)~
HO= B~ @) (2 +21BI) — bl — wol”
L= )L (5 + B — Al — sl
= [ Bt (1= @)1= B + 2 ANl — I + (5 + 221 Bl — gl
H1= @) (1= BIBIAN + AP + GBI+ 22| BI) Az, ~ B
~2y(1 — ) (L~ B)| Az, — By |
(1= @) (1= B (e — 2l + it — )
HO= B = )2+ AT — 0B — ol

H =)+ ABI) — anB)lon — o)
HL= B3 — @) [(3 + AN o) — ol
H(B+ B ~ Bl — w0l

= [ Bt (1= @)1= B + 2 AN — I + (2 + 221 Bl — gl
~(1 = @) (1= BN + 1AL + BBl +2BI) + 23]l Az — B
(1= @) (1= B (e =l + it — )
HO= B = )2+ AT — 0B — ol

H(1 = ) +1BI) — 0ube)llve — ol
HL= B3 — @) (3 + A o) — ol

(60) HB+ANBI) = Badlln = voll?)-

+
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Pria(pq) < [1=0n]@n(pq) + (1 = fBn)om
—(1 =) (1 = Ba) [ Al + ]| AlI%)
+BY Bl +2IBI?) + 29| Azy — Bynll*
—0n(1 = an)(1 = Ba)* (10 — zall* + [l 10 = yull*)
—Bu(1 = Ba)lan + (1 = an) (L = V) L([l2n = zol* + [[yn — v0ll*)
(61)
where

On = Pn—(1—an)(l—p).

By condition (ii) > B8, = oo and then > §, = oco. Hence from Lemma 2.3 that following

n=1 n=1
hm ?,(p, q) exists, implies

(62) lim ||z, —p| and lim [y, — q|.
n—o0 n—00
From equation (61)

(1 = )1 =B)[BIAl +~°IAl1%)
+3VIBI +YIIBIP) + 27][| Az, — Bynll?
—a, (1 — o) (1 — ﬁn)2(”nn - anQ + ||t — yn||2)

S ¢n(p7 Q) - 5n¢n(pa Q) + (1 - 671)0-71

(63) —®,11(p,q) — 0 (as n — o0).
This implies that

(64) li_>m |Az,, — By,|| =0
(65) Tim {|n, — 2]l = 0
(66) Tim [l = ynll = 0
Also

(67> lim @n—i-l(xm yn) =0,

n—oo

It follows from equations (33)

|Zni1 — 2ol = [|Bno + (1 = Bn)Yn — nl|
= [|Ba(@o — 25) + (1 = Ba)(upn — @)
[8n(@0 — @n) + (1 = Bo)(ann + (1 — an) (1 — 24)||
18 (z0 — @0) + (1 = Ba)(1 — an) (N — @) |
Bullzo — pll + Ballzn — pll
(68) +(1 = Bu) (1 — an)Inn — 24l

IN
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[Ynt+1 = Ynll = 1Bavo + (1 = Bn)vn — |
= 118u(wo = yn) + (1 = B)(tn — ya) |

180 (Yo = yn) + (1 = Bu)(onyn + (1 — an) (pa — yn) |
[18a (Yo — yn) + (1 = Bu) (L — ) (1tn — yn) |

< Bullyo = pll + Bullyn — 4l
(69) +(1 = Ba) (1 — )l tn — yall
Ppi1(Tn 5 Yn) = [T — Tall + [Ynt1 — vl
< Bullzo — pll + Bullzn — pll
+(1 = B2) (1 — an)||nn — 24l
+Bullyo — all + Bullyn — dll
(70) +(1 = 8) (1 = an)ltn — yall

From equations (62), (65) and (66), lim ®,.1(x,,y,) = 0.
n—oo
By Lemma 2.1, we have F(S), F(JP'), F(T) and F(J?) are closed and convex, and hence
[ is also closed and convex. Let (p,§) = Pr(u,v). By characterization of the metric projection,

we get

(71) ((w,0) = (B, 9), (,9) = (,9) <0, VzeT.

Now, since {z,,y,} is bounded in H; x Hs, there exists (p,§) € H; x Hy and a subsequence
{n;s Yn;} of {xn,yn} such that (z,,,y,,) — (p,q) and Since (p,q§) € I', we obtain Sp = {p},
TG={q}, JV'p = {p} and J*G = {q}.

(72) lim sup ((u, v) = (p,9), (n, yn) = (P, ¢)) <0

n—oo
To show this, since {z,,y,} is bounded in H; x Hj, there exists (p,q) € H; x Hy and a
subsequence {x,,, Yn, } of {zn,yn} such that (z,,,y,,) — (p,q) and

lim sup [(u — D,z —D) + (v —G,Yn — Q)]

n—o0

= lim sup ((u,v) — (D, q), (Tn,Yn) — (P, q))

(7?)) = 11II1<(’U,,U) - (ﬁv é)a (xnmym> - (ﬁa é»

i—00

But (z,,,Yn,) — (p,q) implies that z,, — p and y,, — ¢. Hence from equation (62), we have

x,, — p and v,, — ¢, respectively. Now, since (I —S) and (I —T') are demiclosed at zero, from
Equation (65) and (66) we get p € F'(S) and ¢ € F(T).

Next, we show that Ap = Ba. Observe that
|Ap — Bql* = [|Ap — Ay, + Aw,, — Byn, + By,, — Bg|*
= ||(Ap — Ax,, + By, — Bq§) + (Ax,, — By,,)|?
< Ay, — By, ||* + 2{Ap — BG, Ap — Ay, + Byn, — Bq)
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Since z,, — p and y,, — ¢ as ¢ — oo, it follows that Az,, — Ap and By,, — B{ as i — o0
Taking limits on both sides, and making use of Equation (64), we get

|Ap — B(j“2 < lim sup ||Az,, — Byn, 2
1—00
+2lim sup (Ap — Bq, Ap — Az, + Byn, — Bq)

i—00

(74) = 0.

The inequality (74) implies that Ap = Bg, that is (z,y) € T.

Since x,, = P, Yn, — G, |7 — zal|| = 0 and ||p, — yu|| — 0 as n — oo, we have x,, — p and
Yn; — ¢. By the demiclosedness of I —S and I —J f ! at zero, then I — SJ f ? is also demiclosed
at zero. Again by the demiclosedness of I — T and I — Jf2 at zero, then I — T(]f'2 is also
demiclosed at zero, and from equations (65) and (66), we get p € F(SJ,") = F(S)N By !0 and
g€ F(TJ?) = F(T)N By 0.

Now let us show that p € B;'0. Let w, = J (2, — yA*(Ax, — By,), then we can easily
prove that
% (xp — wp — yA*(Ax, — By,)) € Biw,

By the monotonicity of By, we have

<wn — 0, % (xy, —wp — yA*(Az,, — By,)) — w>

for all (v,w) € G(B;). Thus, we also have
1
(7 (n = 005 (o = o, = 74", = By )~ )

for all (v, w) € G(By). Since wy,, — P, ||wn, — J2* (20, —yA* (A, — Byn,))|| — 0. Ax,, — By,, —
0 as i — oo, then by taking the limit as i — oo in equation (75) yields
<ﬁ -0, _w> < 0

for all (v,w) € G(Bj). By the maximal monotonicity of By, we get 0 € B;p, that is, p € B; 0.
Again, let us show that ¢ € B;'0. Let w, = Jfb (yn + vB*(Ax,, — By,), then we can easily
prove that

1
5 (W = @0+ 1B (A, — By,)) € Byw,

By the monotonicity of By, we have

1

for all (0,9) € G(By). Thus, we also have

1
(76> <wm — 0, X (ym — Wh; + VB*(A'IM - Bym)) - 79>

for all (0,9) € G(By). Since @,, = 4, ||@n, — I (Yn, —YB*(Ax,, — Byn,))|| — 0. Az, — Byn, —
0 as i — oo, then by taking the limit as i — oo in equation (75) yields
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for all (,9) € G(B,). By the maximal monotonicity of By, we get 0 € Bog, that is, ¢ € B; 0.
Hence, the sequence {(x,,y,)} generated by equation (33) converges strongly to (p.q) € I as
n — oo. This completes the proof of the theorem.

Corollary 3.1. Let Hy and Hy be real Hilbert spaces. Let A : Hi — Hs and B : Hy —
Hjbe two bounded linear operators, and S : Hi — CB(Hy) be multivalued Lipschitzian quasi-
pseudocontractive and T : Hy — CB(H3) be multivalued Lipschitzian quasi-pseudocontractive
such that (I —S) and (I —T) are demiclosed at zero. If the solution set of SEFPNPP is
nonempty (that is, T = {z € F(S),y € F(T), Ax,, = By,} # 0). Suppose that xo, x1 € Hy and
Yo, y1 € Hy are chosen arbitrarily. Let {(x,,y,)} be the iterative sequence generated by

Tpp1 = Bpvo+ (1= Bn)un

= 1— —~A*(Az, — B
(77> un anin ( an) ( n ’7 ( an yn)) n Z 1
Yn+1 = Bny(] + ( - 6n)vn
Uy = uyn + (1 —a)T(y, +yB*(Ax, — By,))

where the parameter v and the sequences {an}, {Bn} C (0,1) satisfying the conditions: (i)
v E (O, min (W, ﬁ)), (4d) D07 ay < 00, (iii) lim 5, =0 and (iv) Y27, B = 00. Then,
(a) lim D, (p,q) exists for each p,q €T,
(0) T [l — S, — YA Az, — Byl = i [l — T +B*(Az — By)| =0,
(c) {:vn} ° , converges strongly to (p,q) € T.

Corollary 3.2. Let Hy and Hy be real Hilbert spaces. Let A : Hi — Hs and B : Hy — Hj
be two bounded linear operators and if the solution set of SEFPNPP is nonempty (that is,
I' ={x € B{'0,y € B,'0,Ax,, = By,} # (). Suppose that xo, v, € H, and yo, y1 € Hy are
chosen arbitrarily. Let {(z,,yn)} be the iterative sequence generated by

Tp+1 = 571550 + (1 - Bn)un

(78) U, = apTy+ (11— an)Jfl (x, — yA*(Az,, — By,)) 01,
Yn+1 — BnyO + (1 - Bn)vn
U = Qupyn+ (1 — 0471)J>]\32 (Y + vB*(Ax, — By,))

where the parameter v and the sequences {an}, {Bn} C (0,1) satisfying the conditions: (i)
v E <0,min (%, %)), (17) D07y < 00, (241) lim 3, =0 and (iv) > .07, B, = 0o. Then,
TAI? TE] n=1 Jim et
(a) lim &,(p,q) exists for each p,q € T',
n—oo
(6) T e — I (@0 = YA* (A = Byl = i [l = I (3 + 7B (Az, — Bya))|| = 0,

n—oo

(c) {xn}22, converges strongly to (p,q) € T.

4. APPLICATIONS

Let f be a bifunction from C' x C' to R, where R is the set of real numbers. The equilibrium
problem is to find € C such that f(z,y) > 0 for all y € C. The set of such solutions is denoted
by EP(f). Numerous problems in physics, optimization, and economics reduce to finding a
solution to the equilibrium problem (see [5]).

Lemma 4.1. For solving the equilibrium problem, they assumed that the bifunction f satisfies
the following conditions:

(A1) f(z,z) =0 forallz € C,
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(A2) f is monotone, that is, f(z,y) + f(y,x) <0 for all xz,y € C,
(A3) for cvery 2,9, 2 € C, Timsupyg £tz + (1 — Hh,y) < f(,),
(Ad) f(x,-) is convex and lower semicontinuous for each x € C.

Lemma 4.2. [5]. Let C' be a nonempty closed convex subset of H, and let f be a bifunction
from C x C to R satisfying (A1) — (A4). If r > 0 and x € H, then there exists z € C' such that

(79) f(z,y)+%<y—z,z—w>20, vy € C.

Lemma 4.3. [19]. Let C be a nonempty closed convex subset of H, and let f be a bifunction
from C x C to R satisfying (A1) — (A4). Forr >0, define a mapping T, : H — C' as follows:

(80) TT(:c):{zEC:f(z,y)—l—%(y—z,z—:@20, Yy € C'}.

Then the following hold:

(i) T, is single valued,
(ii) T, is firmly nonexpansive, that is, for any x,y € H
(81) (& =y Tw—Ty) > |Tox - Tyl

iii) Fiz(T,) = EP(f),

iv) EP(f) is closed and convex.

(
(
Let C and () be nonempty closed convex subsets of H; and H,, respectively. Let f; : CxC —
R and f5 : @ x@Q — R be two bifunctions and A : H; — Hs and B : Hy — H3 be bounded linear

operators, then the split equality equilibrium problem (SEEP) is to find a point (z*,y*) € C'xQ
such that

(82) filz* ) Vx € C and }

Then above problem is to find a point (z*,y*) € C' x @ such that

(83) z* € EP(f1) and y* € EP(fs) : Ax™ = By".

Lemma 4.4. [29] Let C be a nonempty closed convexr subset of H, and let f be a bifunction
from C x C to R satisfying (A1) — (A4). Define Ay as follows:

) {reH f(zy) 2 (y—u,2), Vyel}, ifzel
(51) 4@@—{® e
Then the following hold:

i) A; is msximal monotone,
!

.. -1

(i) EP(f) = A0,

(ii) 77 = (I +rAp)~t0, r> 0.

Consider the variational inequality problem. Let H be a real Hilbert space, and let f be a
proper lower semicontinuous convex function of H into (—oo,+oco]. Then the subdifferential

Of of f is defined as
(85) Of(@)={2€ H: f(y)— f(x) 2 (z,y —x), Vy € H}
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for all x € H. [27] claimed that Of is a maximal monotone operator. Let C' be a nonempty
closed convex subset of H, and let ¢ be the indicator function of C'. That is,

(56) Solz) = { o

Since d¢ is a proper lower semicontinuous convex function on H, the subdifferential 05, of ¢
is a maximal monotone operator. The resolvent Jy of 05, for A > 0 is defined by

(87) I = (I + N\os.) 'z, Vx € H.
they have

u=(I+Ns,) 'z & z€u+ N\s,u

< reu+ANcu<s x—u e ANcu

1
& X(x—u,y—u)g(), Yy e C
(88) & u= Pox

where Nou = {z € H : (z,z —u) < 0 Yy € C}. The variational inequality problem for
nonlinear operator A is to find z € C such that

(89) (Az,y—2) >0 VyeC

The set of its solutions is denoted by VI(C, A). Then they have
VI(C,A)

(Az,x —2) >0 Vye C
(—Az,x—2) <0 VyelC

—Az € Ngz

0€ Az + Nez = 0 € Az + 05,2
z € (A+ 05,)7 0.

z

(R

(90)

¢

With (90), we can obtain the strong convergence theorem for the variational inequality problem.
Let C and () be nonempty closed convex subsets of H; and H, respectively. Let S : H; — H;
and T : Hy — Hj be two quasi pseudocontractiv mappings and A : H; — Hs and B : Hy, — Hj
be bounded linear operators.
The Split Equality Variational Inequality Problem denoted by SEVIP is to find a point
(u*,v*) € C x @ such that

(u—u*, ST (u* — yA*(Ax, — By,))) >0 Yu € C and
(91) (v —v*, TJP" (v* + yB*(Azx, — By,))) >0 Yu € Q.
such that Ax, = By,.

Let D be the solution set of the SEVIP given by
(92) D={u"eVIC,S),veVIQ,T): Az, = By,}

We observe that u*,v* € SEVIP if and only if u* = SJ" (u* — yA*(Az, — By,)) and v* =
SJP (v* 4 yB*(Ax,, — Byy)).
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Let f: H — (—00,4+o0] be a function, we define the set of minimizer of f by
(93) Argminf :={zx e H: f(x) < f(2),Vz € H}.

If f is a proper, lower semicontinuous and convex function, then 9f is a maximal monotone

operator. Moreover,
(94) v € (0f)'0<=0€df(z) & f(x) < f(2),Vz € H & € Argminf,

that is, Argmin f = (0f)7'0. In this case, the resolvent of df is called the proximity operator
of f.

Let Hy and Hy be real Hilbert spaces. Let f : H; — (—o0,400] and g : Hy — (—00, +0]
be proper, lower semicontinuous and convex functions. Let A : Hy — Hs and B : Hy — H;
be bounded linear operators, the Split Optimizatin problem (SOP) is the problem of finding
(z*,y*) € Hy X Hj such that

(95) x* € Argmin f and y* € Argmin g, such that Az* = By".

Denote by 0f = By and dg = B,. Since z* and y* are the minimum of f on H; and g on Hs,
respectively for any A > 0, we have

" = F(S) N (8f)7'0 = Fiz(SJ%) and
(96) y* = F(T) N (dg)~'0 = Fiz(TJY).

This implies that the split optimization problem (95) is equivalent to the split common fixed
point and null point problem SEFPNPP.

4.1. Split Equality feasibility Problem (SFP).

Theorem 4.1. Let H, and Hy be real Hilbert spaces and C and ) be nonempty closed convex
subsets of Hy and Hy respectively. Let A : Hi — Hsz and B : Hy — Hs be bounded linear
operators, and S : Hy — CB(H;) be Lipschitzian quasi-pseudocontractive and T : Hy —
CB(Hy) be Lipschitzian quasi-pseudocontractive such that (I —S) and (I —T') are demiclosed
at zero. If the solution set of SFP is nonempty (that is, I = {x € F(S)NC ,y € F(T)NQ :
Az, = By,} # 0). Suppose that xy, x1 € Hy and yo, y1 € Hs are chosen arbitrarily. Let

{(zn,yn)} be the iterative sequence generated by

Tp+1 = @zl‘o + (1 - Bn)un

(97) U, = apty+ (1 —an)SPo(x, —yA*(Azx, — By,)) n>1
Yn+1 = 5713/0 + (1 - Bn)vn
Up = QplYn+ (1 - an)TPQ(yn + /VB*(Axn - Byn))

where the parameter v and the sequences {an}, {Bn} C (0,1) satisfying the conditions: (i)
v E <0,min (W, ﬁ)), (i) D07 oy < 00, (i) lim B, =0 and (iv) >~ B, = co. Then,
n—oo
(a) nh_)IIolo D, (p,q) exists for each p,q € T,
(b) nlggo Hxn - SPC(CETL _VA*(Amn - Byﬂ))” = nlgglo ||yn - TPQ(yn +'VB*(A1‘7L - Byﬂ))” =0,
(c) {zn}52, converges strongly to (p,q) € I.

Proof: Set B; := 0dc and By := 0dg. Then B; and By are maximal monotone such that
Jfl = Pc and J;\BQ = P for A > 0. We also have B;'0 = C and B;'0 = Q. Hence the result
is obtained directly by Theorem 3.1.


https://doi.org/10.28919/ejma.2022.2.1

Eur. J. Math. Appl. | https://doi.org/10.28919/ejma.2022.2.1 22

4.2. Split Equality Equilibrium Problem (SEEP).

Theorem 4.2. Let C' and ) be nonempty closed convex subsets of Hy and Hs, respectively.
fi:CxC = Rand fo: CxC — R be bifunctions satisfying (A1) — (A4) and let T]1 and T be
resolvents of Ay, and Ay, in Lemma 4.4, respectively for ri, ro > 0. Let A: Hy — Hs and B :
Hy — Hj be bounded linear operators, and S : Hy — C'B(Hy) be multivalued Lipschitzian quasi-
pseudocontractive and T : Hy — CB(H3) be multivalued Lipschitzian quasi-pseudocontractive
such that (I — S) and (I —T) are demiclosed at zero. If the solution set of SEEP (83) is
nonempty (that is, I = {x € F(S)NEP(f1),y € F(T)NEP(f2),: Az, = By,} #0). Suppose
that xy, 1 € Hy and yo, y1 € Hy are chosen arbitrarily. Let {(x,,y,)} be the iterative sequence
generated by

Tp+1 = 5n$0 + (1 - ﬁn)un

= — fl _ * _
(98) Up, anTp + (1 = ay)ST] (2, — yA*(Ax), — Byy)) n>1
Yn+1 = ﬁnyO + (1 - Bn)vn
vy = pyn + (1 - an>TTrf22 (yn +vB*(Azy, — Byn))

where the parameter v and the sequences {an}, {Bn} C (0,1) satisfying the conditions: (i)
v E (O, min (W, ﬁ)), (4d) D07 | ay < 00, (iii) Jim. Bn =0 and (iv) Y07, By = co. Then,
(a) lim &,(p,q) exists for each p,q € T,
n—0o0
(b) nh_{go Hajn - STJ; (xn _’YA*<Axn - Byn))” = nh_{go Hyn _TTrJ;Q (yn +vB* (Axn - Byn))H =0,
(c) {xn}22, converges strongly to p,q € T

Proof : We set B; := Ay, and By := Ay,. By Lemma 4.4, we know that By and B, are
maximal monotone, EP(f1) = B;'0, EP(f;) = By'0, T/ = J{* and T2 = J, so the
result is obtained directly by Theorem 3.1.

4.3. Split Equality Variational inequality Problem (SEVIP).

Theorem 4.3. Let Hy and Hy be Hilbert spaces, A : Hi — Hz and B : Hy — H3 be bounded
linear operators, and S : Hy — CB(H;) be multivalued Lipschitzian quasi-pseudocontractive
self maps of Hy and T : Hy — CB(Hz) be multivalued Lipschitzian quasi-pseudocontractive
such that (I — S) and (I —T) are demiclosed at zero. Let A* denotes the adjoint of A. Let
By : Hy — 211 and By : Hy — 22 be two set valued mazimal monotone mappings and vy, A > 0.
Given any x* € Hy, y* € Ho
(i) if 2* and y* are solutions of SEVIP, then JO' (z* — yA*(Az* — By*)) = x* and J* (y, +
vB*(Az* — By")) = y*,
(ii) Suppose that J2' (v* — yA*(Ax* — By*)) = «* and J2*(y* +vB*(Ax* — By*)) = y*, and
the solution set of SEVIP are not empty, then x* and y* are solutions of SEVIP.

Proof : We set By := Ay, and By := Ay,. By Lemma 4.4, we know that B, and B, are
maximal monotone, S = I, T = I, so the result is obtained directly by Theorem 3.1.

4.4. Split Equality Optimization Problem (SEOP).

Theorem 4.4. Let H, and Hy be Hilbert spaces. Let f : Hi — R and g : Hy — R be

proper lower semicontinuous convex function of H into (—oo,+o00|. Let A : Hy — Hj and
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B : Hy — Hjs be bounded linear operators, and S : Hy — CB(H;) be Lipschitzian quasi-
pseudocontractive and T : Hy — CB(H3) be Lipschitzian quasi-pseudocontractive such that
(I —S) and (I —T) are demiclosed at zero. If the solution set of SEOP (95) is nonempty (that
is, L ={x € F(S)N(0f)710,y € F(T)N(dg)~'0 : Az,, — By,} # 0). Suppose that xo, v, € H;
and Yo, y1 € Hy are chosen arbitrarily. Let {(x,,y,)} be the iterative sequence generated by

Tp+1 = ano + (1 - Bn)un

0, *
(99) Uy = ity + (1 —ay)ST (x, — yA*(Az, — By,)) n>1
Yn+1 = BnyO + (1 - Bn)vn
Uy = QuYn+ (1— an)TJff(yn +vB*(Ax,, — By,))

where the parameter v and the sequences {ay}, {B.} C (0,1) satisfying the conditions: (i)
v E <0,min (W, ﬁ)), (id) D02 ay < 00, (iil) 7}1%1120 B =0 and (iv) Y7, By = co. Then,
(a) nlljgl@ D, (p,q) exists for each p,q € T,
(b) lim fa, =S (20— A (A2 = Bya))|| = lim ||y =TI (g +7B" (A2 — Bya))| = 0,
(c) {zn}52, converges strongly to p,q € T.

Proof: Set By := df and B, := dg. Hence the result is obtained directly by Theorem 3.1.

Remark 4.1.

(1) We obtained strong convergence results from our algorithm without imposing compact-
ness type condition (demi-compactness) on the mapping S and T which appear to a
stronger condition.

(2) Chang et al. [1/] showed that strong convergence is guaranteed if the maps S and T are
semi-compact whereas the condition is not required in our theorem.

(3) The efficiency and implementation of iterative algorithm does not require the calculation
or estimation of the operator norms ||A|| and ||B|| which may at times be as difficult as
solving the original problem itself.

(4) Our work unify the split equality fized point problem, split equality null point problem
and other related fixed point problems.

(5) The above results for multivalued Lipschizian quasi-pseudo contractive maps are also
valid for quasi nonexpansive maps, firmly quasi nonexpansive, demicontractive mappings

and hence our results improve and extend many results in the literature [1/, 10, 2/].
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