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QUALITATIVE BEHAVIOR OF A SYSTEM OF SECOND ORDER
DIFFERENCE EQUATIONS

E. M. ELSAYED1,2 AND A. ALSHAREEF1,∗

Abstract. In this paper, we deal with the following system of rational difference equations

χn+1 =
α1 χn−1 τn−1

β + τn−1
and τn+1 =

α2 χn τn
β + χn

,

where α1, α2 and β are real positive numbers and the initial conditions are χ0, χ−1, τ0 and
τ−1. We show that the solutions of this system are bounded. Also, we prove that there is no
periodic solutions of period two. Moreover, we investigate the local and global stability of the
equilibrium point. Some numerical examples are given.

1. Introduction

In recent years, a lot of articles focus on investigating the system of rational difference
equations, since it appears in many fields of sciences and it analogy of a discrete system.
The study of a system of rational difference equation concern to explore the solution behavior
by attempting to find the critical points and study their stability, analyze the boundedness,
examine the periodic solution and sometimes present the explicit solution if it is possible.
Kurbanli [15] et al. investigated the solutions of the below system of fractional difference
equations

Wn+1 =
Wn−1

ZnWn−1 + 1
and Zn+1 =

Zn−1
Wn Zn−1 + 1

.

In [2], Al-Hadibat et al. solved and discussed the bifurcation analysis for the following system

Wn+1 =
Wn−1

Wn−1 + r
and Zn+1 =

Wn−1 Zn
Wn−1 Zn + r

.

Haddad et al. [10] presented the explicit solution of the rational difference equations

Wn+1 =
rWn Zn−1
Zn − a

+ b and Zn+1 =
tWn−1 Zn
Wn − b

+ a.

Kara and Yazilk [11] proved that the following rational difference of higher order can be solve

Wn =
Wn−k Zn−k−l

Zn−l (αn + βnWn−k Zn−k−l)
and Zn =

Zn−kWn−k−l

Wn−l (An +Bn Zn−kWn−k−l)
.
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In [5], Elsayed obtained the solution of the below rational difference system of order two

Wn+1 =
Wn−1

±1 +Wn−1 Zn
and Zn+1 =

Zn−1
∓1 + Zn−1Wn

.

To more studied in nonlinear difference equation, we refer to see [1, 3, 6, 7, 9, 12–14, 16]. The
main purpose of this article is to study the character of the solution behavior for the following
system of second order

(1) χn+1 =
α1 χn−1 τn−1
β + τn−1

and τn+1 =
α2 χn τn
β + χn

,

where α1, α2 and β are positive real numbers and the initial conditions are χ0, χ−1, τ0 and τ−1.
This article was collected as follows: In Section 2, we introduce some definitions and theorems
that are used for our study. In Section 3, we analyze the boundedness of the solution. After
that, we examine the nature of the periodic solution in Section 4. In Section 5 and Section
6, we study the local and global stability of the equilibrium points, respectively. Finally, in
Section 7, we present some numerical examples in order to illustrate the theoretical results.

2. Preliminaries and definitions

This section deals with theorems and definitions that are useful in our study.

Definition 2.1. Let V ∈ R and H is a continuous function and it has partial derivative on
V k+1, such that V k+1 = V × V × ...× V (k + 1-times). Then, for v−l, v−k+1, ..., v0 ∈ V , the
difference equation

(2) vn+1 = H(vn, vn−1, ..., vn−k), n = 0, 1, ...

has a unique solution {vn}∞n=−k.

Definition 2.2. A point v̄ is said to be an equilibrium point of (2) if v̄ = H(v̄) is satisfied.

Definition 2.3. The equilibrium point v̄ of (2) is stable when

∀ ξ > 0,∃ η > 0, s.t., |v0 − v̄| < η, implies that |Hn(v0)− v̄| < ξ,

∀n > 0. And it is unstable if v̄ is not stable.

Definition 2.4. The point v̄ is said to be attracting when the relation

∃ϑ > 0, s.t., |v0 − v̄| < ϑ, implies that lim
n−→∞

vn = v̄.

is true. If ϑ =∞, then v̄ is global attractor.

Definition 2.5. The following statements are holds for (2):

(i) If v̄ is stable and attracting, then it is a asymptotically stable equilibrium point.
(ii) v̄ is said to be a globally asymptotically stable equilibrium point when it is stable and

globally attracting.

Definition 2.6. Consider a system of difference equation is defined as

(3) v(n+ 1) = H(v(n)), v ∈ U and H(0) = 0,

since U is a neighbourhood of the origin in Rn.

https://doi.org/10.28919/ejma.2021.1.15
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Theorem 2.1. Suppose that F -continuous differentiable on open neighbourhood, G ⊆ Rk+1.
Then

(i) If all the characteristic roots of (3) lie inside the unit disk, then v̄ is asymptotically
stable.

(ii) If at least one characteristic roots of (3) outside the unit disk, then v̄ is unstable.

Theorem 2.2. [8] Assume that the polynomial equation is

(4) x4 Y
4 + x3 Y

3 + x2 Y
2 + x1 Y + x0 = 0.

Such that xi ∈ R for i = 0, 1, ..., 4. Then, the sufficient and necessary conditions that all
eigenvalues of (4) are less that one, i. e., all roots of (4) are inside the unit disk, are

(i) |x1 + x3| < 1 + x0 + x2.
(ii) |x1 − x3| < 2 (1− x0).
(iii) x2 − 3x0 < 3.
(iv) x0 + x2 + x20 + x21 + x20 x2 + x0 x

2
3 < 1 + 2 x0 x2 + x1 x3 + x0 x1 x3 + x30.

Theorem 2.3. [4] Suppose that W : [a, b]h+1 −→ [a, b] is a continuous function, where h > 0

and [a, b] ∈ R. Let the difference equation be

(5) un+1 = W (un, un−1, ..., un−h), n = 0, 1, ...

Consider W is weakly monotonic. Suppose, in addition that, wherever (l, L) is a solution of
the system

l = W (l1, l2, ..., lk+1) and L = W (L1, L2, ..., Lk+1),

where

li =

l, if W nondecreasing inZi,

L, if W nonincreasing inZi,

Li =

L, if W nondecreasing inZi,

l, if W nonincreasing inZi.

Thus, l = L. ∀ i = 1, 2, ..., l+ 1. Then there exists a unique equilibrium point and it is globally
attractor for equation (5).

Definition 2.7. The sequence {un}∞n=−j has a periodic solution with period t if un+t =

un ∀n ≥ −j.

3. Boundedness of the solution

The next theorem analysis the boundedness of every non-negative solutions of system (1).

Theorem 3.1. The solutions {(χn, τn)}∞n=−1 of system (1) are bounded if and only if α1 and
α2 are less than one.

Proof. For any non-negative solution {(χn, τn)}∞n=−1 of (1), one has

χn+1 =
α1 χn−1 τn−1
β + τn−1

≤ α1 χn−1 τn−1
τn−1

⇒ χn+1 ≤ α1 χn−1,
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Then, for n = 0, 1, ....., we see that

n = 0 ⇒ χ1 ≤ α1 χ−1,

n = 1 ⇒ χ2 ≤ α1 χ0,

n = 2 ⇒ χ3 ≤ α1 χ1 ≤ (α1)
2 χ−1,

n = 3 ⇒ χ4 ≤ α1 χ2 ≤ (α1)
2 χ0,

n = 4 ⇒ χ5 ≤ α1 χ3 ≤ (α1)
3 χ−1,

n = 5 ⇒ χ6 ≤ α1 χ4 ≤ (α1)
3 χ0,

...
...

n = 2N − 1 ⇒ χn ≤ (α1)
N χ−1, N = 0, 1, 2, ...

n = 2N ⇒ χn ≤ (α1)
N χ0, N = 0, 1, 2, ...

Therefore, the sequence {χn}∞n=−1 is bounded above by ρ1 which is given as ρ1 =

max{αN1 χ0, α
N
1 χ−1} for N = 0, 1, 2, .. when α1 < 1. Similarly, we show that the sequence

{τn}∞n=−1 is bounded by using the following relation

τn+1 =
α2 χn τn
β + χn

≤ α2 χn τn
χn

⇒ τn+1 ≤ α2 τn.

Then, for n = −1, 0, 1, ..., we get

n = −1 ⇒ τ0 ≤ α2 τ−1,

n = 0 ⇒ τ1 ≤ α2
2 τ−1,

n = 1 ⇒ τ2 ≤ α2 τ1 ≤ (α2)
3 τ−1,

n = 2 ⇒ τ3 ≤ α2 τ2 ≤ (α2)
4 τ−1,

...
...

n = N ⇒ τn ≤ (α2)
N+1 τ−1, N = 0, 1, 2, ...

It is clear that if α2 < 1, then the sequence {τn}∞n=−1 is bounded from above by σ1 =

(α2)
N+1 τ−1 for N = 0, 1, 2, ... Furthermore, we will prove that the solutions {(χn, τn)}∞n=−1

are bounded. Thus, from (1) we have

χn+1 ≥
α1

β + τn−1
⇒ χn ≥

α1

β + σ1
, ∀ n = −1, 0, 1, ...

Implies ρ2 ≤ χn ≤ ρ1, where ρ2 = α1

β+σ1
. Moreover, we get the equation

τn+1 ≥
α2

β + χn
⇒ τn ≥

α2

β + ρ1
, ∀ n = −1, 0, 1, ...

Hence, we get σ2 ≤ τn ≤ σ1, since σ2 = α2

β+ρ1
. �

4. Periodic solution

In this section, we discuss the periodic solution of period two.

Theorem 4.1. There is no periodic solution of period two for the system (1).

https://doi.org/10.28919/ejma.2021.1.15
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Proof. Assume there exist a priodic solution of period two of (1)

...., (Θ1,Λ1), (Θ2,Λ2), (Θ1,Λ1), (Θ2,Λ2), ...

Then, from (1), we have

Θ1 =
α1 Θ1 Λ1

β + Λ1

⇒ βΘ1 + Θ1 Λ1 = α1 Θ1 Λ1,(6)

Θ2 =
α1 Θ2 Λ2

β + Λ2

⇒ βΘ2 + Θ2 Λ2 = α1 Θ2 Λ2,(7)

Λ1 =
α2 Θ2 Λ2

β + Θ2

⇒ β Λ1 + Λ1 Θ2 = α2 Θ2 Λ2,(8)

Λ2 =
α2 Θ1 Λ1

β + Θ1

⇒ β Λ2 + Λ2 Θ1 = α2 Θ1 Λ1.(9)

Multiplying equations (6) and (7) by Θ2 Λ2 and Θ1 Λ1, respectively.

βΘ2 Λ2 Θ1 + (1− α1) Θ2 Λ2 Θ1 Λ1 = 0,(10)

βΘ1 Λ1 Θ2 + (1− α1) Θ1 Λ1 Θ2 Λ2 = 0.(11)

By subtracting (11) from (10), we get

β (Θ2 Λ2 Θ1 −Θ1 Λ1 Θ2) = 0,

Θ2 Λ2 Θ1 = Θ1 Λ1 Θ2.

Hence, we see that Λ1 = Λ2. Now, to show that Θ1 = Θ2, we multiply (8) by Θ1 Λ2 and (9)
by Θ2 Λ1,

βΘ1 Λ2Λ1 + Θ1 Λ2 Λ1 Θ2 = α2 Θ2 Θ1 Λ2
2,(12)

βΘ2 Λ1 Λ2 + Θ2 Λ1 Λ2 Θ1 = α2 Θ2 Θ1 Λ2
1.(13)

Then, from (12) and (13), we have

(14) β Λ1 Λ2 (Θ1 −Θ2) + α2 Θ1 Θ2(Λ
2
1 − Λ2

2) = 0.

Since Λ1 = Λ2, the equation (14) gives Θ1 = Θ2. Therefore, the periodic solution of period two
is not exist.

�

5. Local stability of equilibria

By solving algebraic equations

(15) χ̄ =
α1 χ̄ τ̄

β + τ̄
= 0 and τ̄ =

α2 χ̄ τ̄

β + χ̄
= 0,

we have
E0 = (χ̄, τ̄) = (0, 0) and E1 = (χ̄, τ̄) =

(
β

α2 − 1
,

β

α1 − 1

)
.

We notice that positive equilibrium point E1 exists if and only if αi > 1, where i = 1, 2. In
the next theorem, we explore the stability analysis of the equilibrium points.

Theorem 5.1. For system (1), the following statements are holds.

(a) The equilibrium point E0 is always exists and it is locally asymptotic stable.
(b) If αi > 1 , then the positive fixed point E1 exists and it is unstable.

https://doi.org/10.28919/ejma.2021.1.15
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Proof. To investigate the stability of the critical points, we assume χn−1 = ωn and τn−1 = υn,
then the system (1) will be

(16) (χn+1, ωn+1, τn+1, υn+1)
T =

(
α1 ωn υn
β + υn

, χn,
α2 χn τn
β + χn

, τn

)T
.

The Jacobian matrix of (16) is JF =


0 α1υn

β+υn
0 α1 β ωn

(β+υn)2

1 0 0 0
α2 β τn
(β+χn)2

0 α2 χn

β+χn
0

0 0 1 0

. By evaluating JF

at E0 = (0, 0, 0, 0), we get the eigenvalues |λ1| = |λ2| = |λ3| = |λ4| = 0. Clearly, all the
eigenvalues are inside the unit disk. It means that the origin is locally stable. The proof of
(a) is complete. Now, we will apply Jury’s condition to prove (b). The characteristic equation
Φ(Λ) of Jacobian matrix JF |E1 , which is evaluated at E1, defined as

Φ(Λ) = Λ4 − Λ3 − Λ2 +
α1 + α2 − 1

α1 α2

Λ.

Such that z4 = 1, z3 = −1, z2 = −1, z1 = α1+α2−1
α1 α2

and z0 = 0. Now, we examine condition
(i) of Theorem. 2.2

|z1 + z3| < 1 + z0 + z2,∣∣∣∣α1 + α2 − 1

α1 α2

− 1

∣∣∣∣ ≮ 0,∣∣∣∣α1 + (α2 − 1)− α1 α2

α1 α2

∣∣∣∣ ≮ 0,∣∣∣∣α1(1− α2) + (α2 − 1)

α1 α2

∣∣∣∣ ≮ 0,∣∣∣∣(1− α2)(α1 − 1)

α1 α2

∣∣∣∣ ≮ 0,

−
(

(1− α2)(α1 − 1)

α1 α2

)
≮ 0,

(α2 − 1) (α1 − 1) ≮ 0,

since α1 > 1 and α2 > 1, we have a contradiction. Therefore, from Theorem. 2.2, the
condition (i) is not satisfied and this is sufficient to conclude that the equilibrium point E1

unstable. Thus, there is no need to test the conditions (ii) and (iv). �

6. Global attracting of fixed point

Theorem 6.1. The equilibrium point E0 is globally attracting if β 6= 0 is satisfied.

Proof. Let f : (0,∞) × (0,∞) −→ (0,∞) and g : (0,∞) × (0,∞) −→ (0,∞) are continuous
functions. In addition, suppose that f : [a1, b1] × [a2, b2] −→ [a1, b1] and g : [a1, b1] × [a2, b2] −→
[a2, b2], where a1, a2, b1 and b2 are positive real numbers. Such that

f(χ, τ) =
α1 χ τ

β + τ
and g(χ, τ) =

α2 χ τ

β + χ
.

https://doi.org/10.28919/ejma.2021.1.15
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Hence,
∂f

∂χ
=

α1 τ

(β + τ)
,

∂f

∂τ
=

α1 β χ

(β + τ)2
,

∂g

∂χ
=

α2 β τ

(β + χ)2
,

∂g

∂τ
=

α2 χ

(β + χ)
.

We observe that f(χ, τ) and g(χ, τ) are non decreasing in χ and τ . Then Suppose that
m1, m2, M1, M2 are positive real numbers such that m1 = f(m1,m2), M1 = f(M1,M2), m2 =

g(m1,m2) and M2 = g(M1,M2).

(17) m1 =
α1m1m2

β +m2

M1 =
α1M1M2

β +M2

,

and

(18) m2 =
α2m1m2

β +m1

M2 =
α2M1M2

β +M1

.

From (17), we have

(1− α1)m1m2 + β m1 = 0,(19)

(1− α1)M1M2 + βM1 = 0.(20)

Multiply (19) by M1M2 and (20) by m1m2, we get

(1− α1)m1m2M1M2 + β m1M1M2 = 0,(21)

(1− α1)M1M2m1m2 + βM1m1m2 = 0.(22)

By subtracting (21) from (22), we obtain

β (m1M1M2 −M1m1m2) = 0,

since β 6= 0,

m1M1M2 = M1m1m2 ⇒ M2 = m2.

Similarly, we get M1 = m1. Then, from Theorem. 2.3, there exist only one equilibrium point
and it is globally attractor. �

7. Numerical examples and discussion

In this section, we present some examples to see the effect of α1, α2 and β in the behavior of
the solution. We fix the initial values as χ−1 = 3, χ0 = 4, τ−1 = 1 and τ0 = 2.
Example. 1: We set α1 = 2.5, α2 = 1.6 and β = 2. The result is given in Figure 1.
Example. 2: We have α1 = 2.5, α2 = 1.6 and β = 0.8. The result is shown in Figure 2.

https://doi.org/10.28919/ejma.2021.1.15


Eur. J. Math. Appl. | https://doi.org/10.28919/ejma.2021.1.15 8

0 2 4 6 8 10 12 14 16 18 20

n

0

50

100

150

200

250

300

350

400

450

500

Figure 1. Plot the solution of system (1)
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Figure 2. Plot the solution of system (1)

Example. 3: We set α1 = 0.5, α2 = 0.6 and β = 2. The result is given in Figure 3.
Example. 4: We have α1 = 0.5, α2 = 0.6 and β = 0.4. The result is presented in Figure

4.

https://doi.org/10.28919/ejma.2021.1.15
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Figure 3. Plot the solution of system (1)
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Figure 4. Plot the solution of system (1)

Example. 5: We fix α1 = 1.5, α2 = 0.3 and β = 2. The result is given in Figure 5.
Example. 6: We choose α1 = 0.1, α2 = 1.6 and β = 2. The result is given in Figure

6. From Figure 1 and Figure 2, we see that when α1 and α2 are more than one, the solutions
move to infinity while in Figure 3 and Figure 4 the solutions tend to the origin since α1 and α2

are less than one. It means the solutions are bounded and the equilibrium point E0 is globally
stable if and only if α1 and α2 are less than one. This result confirms with Theorem 3.1 and
Theorem. 6.1. Moreover, we observe that the value of β does not affect the state of stability

https://doi.org/10.28919/ejma.2021.1.15
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Figure 5. Plot the solution of system (1)
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Figure 6. Plot the solution of system (1)

of the fixed point. Finally, from Figure 5 and Figure 6, we conclude that if α1 < 1 or α2 < 1,
then the solutions are bounded and E0 is globally stable.
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