# FIXED POINT THEOREM FOR $(\phi, F)$-CONTRACTION ON $C^{*}$-ALGEBRA VALUED METRIC SPACES 

HAFIDA MASSIT ${ }^{1, *}$ AND MOHAMED ROSSAFI ${ }^{2}$


#### Abstract

Recently, a new type of mapping called $(\phi, F)$-contraction was introduced in the literature as a generalization of the concepts of contractive mappings. This present article extends the new notion in $C^{*}$-algebra valued metric spaces and establishing the existence and uniqueness of fixed point for them. Non-trivial examples are further provided to support the hypotheses of our results.


## 1. Introduction

Banach's contraction principle is a fundamental result in fixed point theory. Due to its importance, several authors have obtained many interesting extensions and generalizations see $[1,4,8,19,21]$. This approach is particularly associated with the work of Picard, although it was Stefan Banach who in 1922 in [2] developed the ideas involved in an abstract setting. Many generalizations of the concept of metric spaces are defined and some fixed point theorems were proved in these spaces. In particular, $C^{*}$-algebra valued metric spaces were introduced by Ma et al [13] as a generalization of metric spaces they proved certain fixed point theorems, by giving the definition of $C^{*}$-algebra valued contractive mapping analogous to Banach contraction principle. many mathematicians worked on this interesting space.

Various fixed point results were established on such spaces, see $[6,9,11,12,16,17]$ and references therein.

Combining conditions used for definitions of $C^{*}$-algebra valued metric and generalized metric spaces, Piri et al [15] announced the notions of $C^{*}$-algebra valued metric space and establish nice results of fixed point on such space.

In this paper, inspired by the work done in $[14,18]$, we introduce the notion of $(\phi, F)$-contraction and establish some new fixed point theorems for mappings in the setting of complete $C^{*}$-algebra valued metric spaces. Moreover, an illustrative examples is presented to support the obtained results.

[^0]
## 2. PRELIMINARIES

Throughout this paper, we denote $\mathbb{A}$ by an unital (i.e , unity element I) $C^{*}$-algebra with linear involution $*$, such that for all $x, y \in \mathbb{A}$,

$$
(x y)^{*}=y^{*} x^{*}, \text { and } x^{* *}=x .
$$

We call an element $x \in \mathbb{A}$ a positive element, denote it by $x \succeq \theta$
if $x \in \mathbb{A}_{h}=\left\{x \in \mathbb{A}: x=x^{*}\right\}$ and $\sigma(x) \subset \mathbb{R}_{+}$, where $\sigma(x)$ is the spectrum of $x$.Using positive element, we can define a partial ordering $\preceq$ on $\mathbb{A}_{h}$ as follows :

$$
x \preceq y \text { if and only if } y-x \succeq \theta
$$

where $\theta$ means the zero element in $\mathbb{A}$.
we denote the set $x \in \mathbb{A}: x \succeq \theta$ by $\mathbb{A}_{+}$and $|x|=\left(x^{*} x\right)^{\frac{1}{2}}$
Remark 2.1. When $\mathbb{A}$ is a unital $C^{*}$-algebra,then for any $x \in \mathbb{A}_{+}$we have

$$
x \preceq I \Longleftrightarrow\|x\| \leq 1
$$

Definition 2.2. Let $X$ be a non-empty set and $d: X \times X \rightarrow \mathbb{A}_{+}$be a mapping such that for all $x, y \in X$ and for all distinct points $z \in X$, each of them different from $x$ and $y$, on has
(i) $d(x, y)=\theta$ if and only if $x=y$; and $\theta \preceq d(x, y)$ for all $x, y \in X$
(ii) $d(x, y)=d(y, x)$ for all distinct points $x, y \in X$;
(iii) $d(x, y) \preceq d(x, z)+d(z, y)$ for all $x, y, z \in X$.

Then $\left(X, \mathbb{A}_{+}, d\right)$ is called a $C^{*}$-algebra valued metric space.
Definition 2.3. [15] Let $\left(X, \mathbb{A}_{+}, d\right)$ be a $C^{*}$-algebra valued metric space.
Suppose that $\left\{x_{n}\right\} \subset X$ and $x \in X$.
If for any $\varepsilon>0$ there is $N$ such that for all $n, m>N,\left\|d\left(x_{n}, x_{m}\right)\right\| \leq \varepsilon$, then $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ is called a Cauchy sequence with respect to $\mathbb{A}$.
We say $\left(X, \mathbb{A}_{+}, d\right)$ is a complete $C^{*}$-algebra valued metric space if every Cauchy sequence with respect to $\mathbb{A}$ is convergent.
It is obvious that if $X$ is a Banach space ,then $\left(X, \mathbb{A}_{+}, d\right)$ is a complete $C^{*}$-algebra valued metric space if we set

$$
d(x, y)=\|x-y\| I
$$

Example 2.4. Consider $X=\mathbb{R}$ and $\mathbb{A}=\mathbb{M}_{2}(\mathbb{R})$
Let $d: X \times X \rightarrow \mathbb{M}_{2}(\mathbb{R})$ be mapping defined by

$$
d(x, y)=\operatorname{diag}(|x-y|, \alpha|x-y|)
$$

where $x, y \in \mathbb{R}$ and $\alpha>0$ is a constant. It is clearly that $d$ is a $C^{*}$-algebra valued metric and $\left(X, \mathbb{M}_{2}(\mathbb{R}), d\right)$ is a complete $C^{*}$-algebra valued metric space by the completeness of $\mathbb{R}$.

The following definition was given by D.Wardowski in [5].
Definition 2.5. [19] Let $\mathcal{F}$ be the family of all functions $F: \mathbb{R}_{+} \rightarrow \mathbb{R}$ and $\Phi$ be the family of all functions $\phi:] 0,+\infty[\rightarrow] 0,+\infty[$ satisfying:
(i) $F$ is strictly increasing ; ie for $\alpha, \beta \in \mathbb{R}_{+}$such that $\alpha<\beta, F(\alpha)<F(\beta)$.
(ii) For each sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ of positive numbers

$$
\lim _{n \rightarrow 0} x_{n}=0, \quad \text { if and only if } \lim _{n \rightarrow \infty} F\left(x_{n}\right)=-\infty
$$

(iii) $\lim \inf _{s \rightarrow \alpha^{+}} \phi(s)>0$ for all $s>0$
(iv) There exists $k \in] 0,1\left[\right.$ such that $\lim _{x \rightarrow 0} x^{k} F(x)=0$.

Definition 2.6. [20] Let $(X, d)$ be a complete metric space. A mapping $T: X \rightarrow X$ is called an $(\phi, F)$ - contraction on $(X, d)$ if there exists $F \in \mathcal{F}$ and $\phi \in \Phi$ such that

$$
(d(T x, T y)>0 \Rightarrow F(d(T x, T y)+\phi(d(x, y)) \leq F(d(x, y))
$$

for all $x, y \in X$ for which $T x \neq T y$
Theorem 2.7. Let $(X, d)$ be a complete metric space and $T: X \rightarrow X$ be an $(\phi, F)-$ contraction. Then $T$ has a unique fixed point.

Definition 2.8. [22] Let the function $\phi: A^{+} \rightarrow A^{+}$be positive if having the following constraints :
(i) $\phi$ is continous and nondecrasing
(ii) $\phi(a)=\theta$ if and only if $a=\theta$
(iii) $\lim _{n \longrightarrow \infty} \phi^{n}(a)=\theta$

Definition 2.9. [22] Suppose that $A$ and $B$ are $C^{*}$-algebra .
A mapping $\phi: A \rightarrow B$ is said to be $C^{*}$ - homomorphism if :
(i) $\phi(a x+b y)=a \phi(x)+b \phi(y)$ for all $a, b \in \mathbb{C}$ and $x, y \in A$
(ii) $\phi(x y)=\phi(x) \phi(y)$ for all $x, y \in A$
(iii) $\phi\left(x^{*}\right)=\phi(x)^{*}$ for all $x \in A$
(iv) $\phi$ maps the unit in $A$ to the unit in $B$.

Definition 2.10. [22] Let $A$ and $B$ be $C^{*}$-algebra spaces and let $\phi: A \rightarrow B$ be a homomorphism
then $\phi$ is called an $*$ - homomorphism if it is one to one $*-$ homomorphism.
A $C^{*}$-algebra $A$ is $*$-isomorphic to a $C^{*}$-algebra $B$ if there exists $*$ - isomorphism of $A$ onto $B$.

Lemma 2.11. [7] Let $A$ and $B$ be $C^{*}$-algebra spaces and $\phi: A \rightarrow B$
is a $C^{*}$ - homomorphism for all $x \in A$ we have

$$
\sigma(\phi(x)) \subset \sigma(x) \text { and }\|\phi(x)\| \leq\|\phi\| \text {. }
$$

Corollary 2.12. [22] Every $C^{*}-$ homomorphism is bounded.
Corollary 2.13. [22] Suppose that $\phi$ is $C^{*}-$ isomorphism from $A$ to $B$, then $\sigma(\phi(x))=\sigma(x)$ and $\|\phi(x)\|=\|\phi\|$ for all $x \in A$.

Lemma 2.14. [22] Every *- homomorphism is positive.

## 3. Main result

Aspired by Wardowski in [10], we introduce the notion of $(\phi, F)$-contraction on $C^{*}$-algebra valued metric space.

Definition 3.1. Let

$$
F: \mathbb{A}_{+} \rightarrow \mathbb{A}_{+}
$$

a function satisfying:
(i) $F$ is continuous and nondecreasing.
(ii) $F(t)=\theta$ if and only if $t=\theta$.

1. A mapping $T: X \rightarrow X$ is said to be a $(\phi, F) C^{*}$ valued contraction of type ( $I$ ) if there exists $\phi: \mathbb{A}_{+} \rightarrow \mathbb{A}_{+}$an $*-$ homomorphism such that

$$
\begin{equation*}
\forall x, y \in X(d(T x, T y) \succeq \theta \Rightarrow F(d(T x, T y)+\phi(d(x, y)) \preceq F(d(x, y)) \tag{1}
\end{equation*}
$$

2. A mapping $T: X \rightarrow X$ is said to be a $(\phi, F) C^{*}$ valued contraction of type (II) if there exists $\phi: \mathbb{A}_{+} \rightarrow \mathbb{A}_{+}$an $*-$ homomorphism satisfying:
(a) $\phi(a) \prec a$ for $a \in \mathbb{A}_{+}$
(b) Either $\phi(a) \preceq d(x, y)$ or $d(x, y) \preceq \phi(a)$, where $a \in \mathbb{A}_{+}$and $x, y \in X$
(c) $F(a) \prec \phi(a)$ Such that

$$
(d(T x, T y) \succeq \theta \Rightarrow F(d(T x, T y)+\phi(d(x, y)) \preceq F(M(x, y))
$$

Where $M(x, y)=a_{1} d(x, y)+a_{2}[d(T x, y)+d(T y, x)]+a_{3}[d(T x, x)+d(T y, y)]$, with $a_{1}, a_{2}, a_{3} \geq 0$ ,$a_{1}+2 a_{2}+2 a_{3} \leq 1$
3. $T$ is said to be $(\phi, F)$ - Kannan-type $C^{*}$ - valued contraction if there exist $\phi$ satisfy $(a),(b)$ and $(c)$ such that $(d(T x, T y) \succeq \theta$ we have

$$
F\left(d(T x, T y)+\phi(d(x, y)) \preceq F\left(\frac{d(x, T x)+d(y, T y)}{2}\right) .\right.
$$

4. $T$ is said to be $(\phi, F)$ - Reich-type $C^{*}$ - valued contraction if there exist $\phi$ satisfy $(a),(b)$ and $(c)$ such that $(d(T x, T y) \succeq \theta$ we have

$$
F\left(d(T x, T y)+\phi(d(x, y)) \preceq F\left(\frac{d(x, y)+d(x, T x)+d(y, T y)}{3}\right) .\right.
$$

Example 3.2. Let $X=[0,1]$ and $\mathbb{A}=\mathbb{R}^{2}$ Then $\mathbb{A}$ is a $C^{*}$ - algebra with norm $\|\cdot\|: \mathbb{A} \rightarrow \mathbb{R}$ defined by

$$
\|(x, y)\|=\left(x^{2}+y^{2}\right)^{\frac{1}{2}} .
$$

Define a $C^{*}$ - algebra valued metric $d: X \times X \rightarrow \mathbb{A}$ on $X$ by

$$
d(x, y)=(|x-y|, 0)
$$

With ordering on $\mathbb{A}$ by

$$
(a, b) \preceq(c, d) \Leftrightarrow a \leq c \text { and } b \leq d
$$

A mapping $T: X \rightarrow X$ given by $T x=\frac{x}{3}$ is continuous with respect to $\mathbb{A}$.
Let $F: \mathbb{A}_{+} \rightarrow \mathbb{A}_{+}$. Defined by

$$
F(x, y)=\left((x-y)^{2}, 0\right)
$$

It is clear that $F$ satisfies $(i)$ and (ii)
We have $\left.F(d(T x, T y))=F\left(d\left(\frac{x}{3}, \frac{y}{3}\right)\right)=F\left(\left(\frac{x}{3}-\frac{y}{3}\right)\right)^{2}, 0\right)$.
And $\left.\left(\frac{x}{3}-\frac{y}{3}\right)\right)^{2}-(x-y)^{2} \leq-\frac{1}{3}(x-y)^{2}$. Therefore $T$ is a valued $(\phi, F) C^{*}$-valued contraction of type $(I)$ with $\phi(d(x, y))=\left(\frac{1}{3}(x-y)^{2}, 0\right)$.
Example 3.3. Let $X=[0,1] \cup\{2,3,4, \ldots\}$ and $\mathbb{A}=\mathbb{C}$ with a norm $\|z\|=|z|$ be a $C^{*}$ algebra.We define $\mathbb{C}^{+}=\{z=(x, y) \in \mathbb{C} ; x=\operatorname{Re}(z) \geq 0, y=\operatorname{Im}(z) \geq 0\}$.
The partial order $\leq$ with respect to the $C^{*}$ - algebra $\mathbb{C}$ is the partial order in $\mathbb{C}, z_{1} \leq z_{2}$ if
$\operatorname{Re}\left(z_{1}\right) \leq \operatorname{Re}\left(z_{2}\right)$ and $\operatorname{Im}\left(z_{1}\right) \leq \operatorname{Im}\left(z_{2}\right)$ for any two elements $z_{1}, z_{2}$ in $\mathbb{C}$.
Let $d: X \times X \rightarrow \mathbb{C}$

$$
\begin{aligned}
& (|x-y|,|x-y|) \text { if } x, y \in[0,1], x \neq y \\
d(x, y)=\{ & (x+y, x+y) \text { if at least one of } x \text { or } y \notin[0,1] \text { and } x \neq y \\
& (0,0) \text { if } x=y
\end{aligned}
$$

Then $(X, \mathbb{A}, d)$ be a complete $C^{*}$-algebra valued metric space.
Let $F: \mathbb{C}^{+} \rightarrow \mathbb{C}$ be defined as

$$
F(t)=\left\{\begin{array}{l}
t \text { if } t \in[0,1], \\
t^{2}, \text { if } t>1
\end{array}\right.
$$

It is clear that $F$ satisfies $(i)$ and (ii) Let $T: X \rightarrow X$ be defined as

$$
T(x)=\left\{\begin{array}{l}
x-\frac{1}{2} x^{2} \text { if } x \in[0,1], \\
x-1, \text { if } x \in\{2,3,4, \ldots\}
\end{array}\right.
$$

Without loss of generality, we assume that $x>y$ and discuss the following cases.
Case $1(x \in[0 ; 1])$.
Then

$$
\begin{aligned}
& F(d(T x, T y))=\left(\left(x-\frac{1}{2} x^{2}\right)-\left(y-\frac{1}{2} y^{2}\right),\left(x-\frac{1}{2} x^{2}\right)-\left(y-\frac{1}{2} y^{2}\right)\right) \\
= & \left((x-y)-\frac{1}{2}(x-y)(x+y),(x-y)-\frac{1}{2}(x-y)(x+y)\right) \\
\leq & \left((x-y)-\frac{1}{2}((x-y))^{2},(x-y)-\frac{1}{2}((x-y))^{2}\right) \\
= & d(x, y)-\frac{1}{2}(d(x, y))^{2} \\
= & F(d(x, y))-\frac{1}{2}(d(x, y))^{2}
\end{aligned}
$$

Then there exists $\phi$ such $\phi(d(x, y))=\frac{1}{2}(d(x, y))^{2}$ and

$$
\forall x, y \in X \quad(d(T x, T y) \geq 0 \Rightarrow F(d(T x, T y)+\phi(d(x, y)) \leq F(d(x, y))
$$

Case $2(x \in\{3,4, \ldots\})$.
Then

$$
d(T x, T y)=d\left(x-1, y-\frac{1}{2} y^{2}\right) \text { if } y \in[0,1]
$$

or

$$
\begin{aligned}
d(T x, T y)= & \left(x-1+y-\frac{1}{2} y^{2}, x-1+y-\frac{1}{2} y^{2}\right) \leq(x+y-1, x+y-1) \\
& d(T x, T y)=d(x-1, y-1) \text { if } y \in\{2,3,4, \ldots\}
\end{aligned}
$$

or

$$
d(T x, T y)=(x+y-2, x+y-2)<(x+y-1, x+y-1)
$$

Consequently

$$
\begin{gathered}
F(d(T x, T y))=(d(T x, T y))^{2} \leq\left((x+y-1)^{2},(x+y-1)^{2}\right) \\
\quad<((x+y-1)(x+y+1),(x+y-1)(x+y+1))
\end{gathered}
$$

$$
\begin{gathered}
=\left((x+y)^{2}-1,(x+y)^{2}-1\right)<\left((x+y)^{2}-\frac{1}{2},(x+y)^{2}-\frac{1}{2}\right) \\
=F(d(x, y))-\frac{1}{2}
\end{gathered}
$$

Case $3(x=2)$.
Then $y \in[0,1], T x=1$, and

$$
d(T x, T y)=\left(1-\left(y-\frac{1}{2} y^{2}\right), 1-\left(y-\frac{1}{2} y^{2}\right)\right)
$$

So, we have $F(d(T x, T y)) \leq F(1)=1$.
Again $d(x, y)=(2+y, 2+y)$.
So,

$$
1=F(d(T x, T y)) \leq F(d(x, y))-\frac{1}{2}
$$

Example 3.4. Let $X=\left\{\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, 1\right\}$. Let $\mathbb{A}_{+}=\left\{(x, y) \in \mathbb{R}^{2}: x, y \geq 0\right\}$.
Define $d: X \times X \rightarrow \mathbb{A}_{+}$as follows:

$$
\begin{aligned}
d(x, y) & =d(y, x) \text { for } x, y \in X, \\
d(x, y) & =(0,0) \Leftrightarrow x=y \\
d\left(\frac{1}{2}, 1\right) & =(0.5,0.5) \\
d\left(\frac{1}{2}, \frac{1}{4}\right) & =(2,3) \\
\left\{d\left(\frac{1}{2}, \frac{1}{3}\right)\right. & =(2,2.5) \\
d\left(1, \frac{1}{3}\right) & =(2,2.5) \\
d\left(1, \frac{1}{4}\right) & =(2.3) \\
d\left(\frac{1}{3}, \frac{1}{4}\right) & =(2,2.6)
\end{aligned}
$$

Let $F, \phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that they can defined as follows:
for $t=(x, y) \in \mathbb{R}^{2}$,

$$
F(t)=\left\{\begin{array}{l}
(x, y) \text { if } x \leq 1 \text { and } y \leq 1 \\
\left(x^{2}, y\right) \text { if } x>1, y \leq 1 \\
\left(x, y^{2}\right) \text { if } x \leq 1 \text { and } y>1 \\
\left(x^{2}, y^{2}\right) \text { if } x>1 \text { and } y>1
\end{array}\right.
$$

and for $s=\left(s_{1}, s_{2}\right) \in \mathbb{R}^{2}$ with $v=\min \left\{s_{1}, s_{2}\right\}$,

$$
\phi=\left\{\begin{array}{c}
\left(\frac{v^{2}}{2}, \frac{v^{2}}{2}\right) \text { ifv } \leq 1 \\
\left(\frac{1}{2}, \frac{1}{2}\right) i f v>1
\end{array}\right.
$$

Define mapping $T: X \rightarrow X$ by $T\left(\frac{1}{2}\right)=1, T(1)=1, T\left(\frac{1}{4}\right)=\frac{1}{2}$ and $T\left(\frac{1}{3}\right)=1$.
Then $T$ can verified that

$$
F(d(T x, T y)+\phi(d(x, y)) \preceq F(M(x, y))
$$

for $a_{1}=\frac{1}{2}, a_{2}=\frac{1}{8}$ and $a_{3}=\frac{1}{8}$

Theorem 3.5. Let $(X, \mathbb{A}, d)$ be a complete $C^{*}$-algebra valued metric space and let $T: X \rightarrow X$ be a $(\phi, F)$-contraction mapping of type $(I)$.
Then $T$ has a unique fixed point $x * \in X$ and for every $x_{0} \in X$ a sequence $\left\{T^{n} x_{0}\right\}_{n \in \mathbb{N}}$ is convergent to $x *$.

Proof. : First ,let us observe that $T$ has at most one fixed point.
Indeed if

$$
x_{1}^{*} ; x_{2}^{*} \in X T x_{1}^{*}=x_{1}^{*} \neq x_{2}^{*}=T x_{2}^{*}
$$

then we get

$$
\phi(d(x, y)) \preceq F\left(d\left(x_{1}^{*} ; x_{2}^{*}\right)-F\left(d\left(T x_{1}^{*} ; T x_{2}^{*}\right)\right)=\theta\right.
$$

wich is a contradiction.
In order to show that thas a fixed point let $x_{0} \in X$ be arbitrary and fixed we define a sequence

$$
\left\{x_{n}\right\}_{n \in \mathbb{N}} \subset X ; x_{n+1}=T x_{n}, n=0 ; 1 ; 2 \ldots
$$

denote

$$
d_{n}=d\left(x_{n+1} ; x_{n}\right) ; n=0 ; 1 ; 2 ; \ldots
$$

if there exists $n_{0} \in \mathbb{N}$ for which $x_{n_{0}+1}=x_{n_{0}}$ then $T x_{n_{0}}=x_{n_{0}}$ and the proof is finished.
Suppose now that $x_{n+1} \neq x_{n}$ for every $n \in X$ then $d_{n} \succ \theta$ for all $n \in \mathbb{N}$ and using (1) the following holds for every $n \in \mathbb{N}$

$$
\begin{equation*}
F\left(d_{n}\right) \preceq F\left(d_{n-1}\right)-\phi\left(d_{n-1}\right) \prec F\left(d_{n-1}\right) \tag{2}
\end{equation*}
$$

Hence $F$ is non decreasing and so the sequence $\left(d_{n}\right)$ is monotonically decreasing in $\mathbb{A}_{+}$. So there exists $\theta \preceq t \in \mathbb{A}_{+}$such that

$$
d\left(x_{n}, x_{n+1}\right) \rightarrow t \text { as } n \rightarrow \infty
$$

From (2) we obtain $\lim _{n \rightarrow \infty} F\left(d_{n}\right)=\theta$ that together with (ii) gives

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d_{n}=\theta \tag{3}
\end{equation*}
$$

Now we shall show that $\left\{x_{n}\right\}$ is a Cauchy sequence in $(X, \mathbb{A}, d)$.To prove it , we shall that

$$
\lim _{n \rightarrow \infty} d_{n}=\theta
$$

Assume that $\left\{x_{n}\right\}$ is not a Cauchy sequence in $(X, \mathbb{A}, d)$.
Then exist $\varepsilon>0$ and subsequences $\left\{x_{m_{k}}\right\}$ and $\left\{x_{n_{k}}\right\}$ with $n_{k}>m_{k}>k$ such that

$$
\left\|d\left(x_{m_{k}}, x_{n_{k}}\right)\right\| \geq \varepsilon
$$

Now, corresponding to $m_{k}$, wecan choose $n_{k}$ such that it isthe smallest integr with $n_{k}>m_{k}$ and satisfing above inequality. Hence

$$
\left\|d\left(x_{m_{k}}, x_{n_{k-1}}\right)\right\|<\varepsilon
$$

So we have

$$
\varepsilon \leq\left\|d\left(x_{m_{k}}, x_{n_{k}}\right)\right\| \leq\left\|d\left(x_{m_{k}}, x_{n_{k-1}}\right)\right\|+\left\|d\left(x_{n_{k-1}}, x_{n_{k}}\right)\right\| \leq \varepsilon+\left\|d\left(x_{n_{k-1}}, x_{n_{k}}\right)\right\|
$$

Using (3) we have

$$
\varepsilon \leq \lim _{k \rightarrow \infty}\left\|d\left(x_{m_{k}}, x_{n_{k}}\right)\right\|<\varepsilon+\theta
$$

This implies

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|d\left(x_{m_{k}}, x_{n_{k}}\right)\right\|=\varepsilon . \tag{4}
\end{equation*}
$$

Again,

$$
\begin{align*}
\left\|d\left(x_{n_{k}}, x_{m_{k}}\right)\right\| & \leq\left\|d\left(x_{n_{k}}, x_{n_{k-1}}\right)\right\|+\left\|d\left(x_{n_{k-1}}, x_{m_{k}}\right)\right\| \\
& \leq\left\|d\left(x_{n_{k}}, x_{m_{k-1}}\right)\right\|+\left\|d\left(x_{n_{k-1}}, x_{m_{k-1}}\right)\right\|+\left\|d\left(x_{m_{k-1}}, x_{m_{k}}\right)\right\| \tag{5}
\end{align*}
$$

Also,

$$
\begin{align*}
\left\|d\left(x_{n_{k-1}}, x_{m_{k-1}}\right)\right\| & \leq\left\|d\left(x_{n_{k-1}}, x_{n_{k}}\right)\right\|+\left\|d\left(x_{n_{k}}, x_{m_{k-1}}\right)\right\|\left\|d\left(x_{n_{k-1}}, x_{n_{k}}\right)\right\| \\
& +\left\|d\left(x_{n_{k}}, x_{m_{k}}\right)\right\|+\left\|d\left(x_{m_{k}}, x_{m_{k-1}}\right)\right\| . \tag{6}
\end{align*}
$$

Letting $k \rightarrow \infty$ in (5) and (6) and using (4) we have

$$
\lim _{k \rightarrow \infty}\left\|d\left(x_{n_{k-1}}, x_{m_{k-1}}\right)\right\|=\varepsilon
$$

Since $d\left(x_{n_{k-1}}, x_{m_{k-1}}\right), d\left(x_{n_{k}}, x_{m_{k}}\right) \in \mathbb{A}_{+}$and

$$
\lim _{k \rightarrow \infty}\left\|d\left(x_{n_{k-1}}, x_{m_{k-1}}\right)\right\|=\lim _{k \rightarrow \infty}\left\|d\left(x_{n_{k}}, x_{m_{k}}\right)\right\|=\varepsilon
$$

. there is exists $s \in \mathbb{A}_{+}$with $\|s\|=\varepsilon$ such that

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|d\left(x_{n_{k-1}}, x_{m_{k-1}}\right)\right\|=\lim _{k \rightarrow \infty}\left\|d\left(x_{n_{k}}, x_{m_{k}}\right)\right\|=s \tag{7}
\end{equation*}
$$

by 7 we have

$$
F(s)=\lim _{k \rightarrow \infty} F\left(d\left(x_{n_{k}}, x_{m_{k}}\right)\right) \preceq \lim _{k \rightarrow \infty} F\left(d\left(x_{n_{k-1}}, x_{m_{k-1}}\right)\right)
$$

Therefore

$$
F(s) \prec F(s)
$$

Thus $F(s)=\theta$ and so $s=\theta$ which is a contradiction. Hence $\left\{x_{n}\right\}$ is a Cauchy sequence in $(X, \mathbb{A}, d)$. Hence there exist $z \in X$ such that

$$
\lim _{n \rightarrow \infty} d\left(x_{n}, z\right)=\theta
$$

Now, we shall show that $z$ is fixed point of $T$.Using (7), we get

$$
F\left(d\left(x_{n}, T z\right)\right) \prec F\left(d\left(x_{n-1}, z\right)\right)
$$

Letting $n \rightarrow \infty$ and using the concept of continuity of the function of $T$.
We have $d(z, T z)=\theta$. Hence by Definition 2.2 , we have $T z=z$.
wich completes the proof.

Example 3.6. Considering all cases in Example 3.3, we conclude that inequality (1) remains valid for $F$ and $T$ constructed as above and consequently by an application of Theorem $3.4, T$ has a unique fixed point.
it is seen that 0 is the unique fixed point of $T$.
Theorem 3.7. Let $(X, \mathbb{A}, d)$ be a complete $C^{*}$-algebra valued metric space.
Let $T: X \rightarrow X$ be $a(\phi, F)$ of type (II), i.e, there exist $F$ and $\phi$ two $*-h o m o m o r p h i s m s$ such that for any $x, y \in X$ we have

$$
(d(T x, T y) \succeq \theta \Rightarrow F(d(T x, T y)+\phi(d(x, y)) \preceq F(M(x, y))
$$

Where $M(x, y)=a_{1} d(x, y)+a_{2}[d(T x, y)+d(T y, x)]+a_{3}[d(T x, x)+d(T y, y)]$, with $a_{1}, a_{2}, a_{3} \geq 0$ ,$a_{1}+2 a_{2}+2 a_{3} \leq 1$.
Then, $T$ has a fixed point.
Proof. Let $x_{0} \in X$ and define $x_{1}=T x_{0}, x_{2}=T x_{1}, \ldots, x_{n}=T x_{n-1}$.
We have

$$
\begin{gathered}
F\left(d\left(x_{n+2}, x_{n+1}\right)\right)=F\left(d\left(T x_{n+1}, T x_{n}\right)\right) \preceq F\left(M\left(x_{n+1}, x_{n}\right)\right)+\phi\left(d\left(x_{n+1}, x_{n}\right)\right)=F\left(a_{1} d\left(x_{n+1}, x_{n}\right)+\right. \\
\left.a_{2}\left[d\left(x_{n+2}, x_{n}\right)+d\left(x_{n+1}, x_{n+1}\right)\right]+a_{3}\left[d\left(x_{n+2}, x_{n+1}\right)+d\left(x_{n+1}, x_{n}\right)\right]\right)-\phi\left(d\left(x_{n+1}, x_{n}\right)\right) .
\end{gathered}
$$

Then we have

$$
\begin{aligned}
F\left(d\left(x_{n+2}, x_{n+1}\right)\right) & \preceq \\
F\left(a_{1} d\left(x_{n+1}, x_{n}\right)+a_{2}\left[d\left(x_{n+2}, x_{n}\right)+d\left(x_{n+1}, x_{n+1}\right)\right]\right. & \left.+a_{3}\left[d\left(x_{n+2}, x_{n+1}\right)+d\left(x_{n+1}, x_{n}\right)\right]\right)
\end{aligned}
$$

Using the strongly monotone proprety of $F$, we have
$d\left(x_{n+2}, x_{n+1}\right) \preceq a_{1} d\left(x_{n+1}, x_{n}\right)+a_{2}\left[d\left(x_{n+2}, x_{n}\right)+d\left(x_{n+1}, x_{n+1}\right)\right]+a_{3}\left[d\left(x_{n+2}, x_{n+1}\right)+d\left(x_{n+1}, x_{n}\right)\right]$.
That is

$$
\left(1-a_{2}-a_{3}\right) d\left(T x_{n+1}, T x_{n}\right) \preceq\left(a_{1}+a_{2}+a_{3}\right) d\left(x_{n+1}, x_{n}\right) .
$$

Therefore

$$
d\left(x_{n+2}, x_{n+1}\right) \preceq \frac{a_{1}+a_{2}+a_{3}}{1-a_{2}-a_{3}} d\left(x_{n+1}, x_{n}\right) .
$$

Wich implies that

$$
d\left(x_{n+2}, x_{n+1}\right) \preceq d\left(x_{n+1}, x_{n}\right) .
$$

Since

$$
\frac{a_{1}+a_{2}+a_{3}}{1-a_{2}-a_{3}}<1
$$

Therefore $\left\{d\left(x_{n+1}, x_{n}\right)\right\}$ is monotone decreasing sequence. There exists $u \in \mathbb{A}_{+}$such that $d\left(x_{n+1}, x_{n}\right) \rightarrow u$ as $n \rightarrow \infty$.
Taking $n \rightarrow \infty$ in

$$
\begin{gathered}
F\left(d\left(x_{n+2}, x_{n+1}\right)\right) \preceq \\
F\left(a_{1} d\left(x_{n+1}, x_{n}\right)+a_{2}\left[d\left(x_{n+2}, x_{n}\right)+d\left(x_{n+1}, x_{n+1}\right)\right]+a_{3}\left[d\left(x_{n+2}, x_{n+1}\right)+d\left(x_{n+1}, x_{n}\right)\right]\right)
\end{gathered}
$$

Using the continuities of $F$ and $\phi$, we have

$$
F(u) \preceq F\left(\left(a_{1}+2 a_{2}+2 a_{3}\right) u\right)-\phi(u)
$$

wich implies that $F(u) \preceq F(u)-\phi(u)$ since $a_{1}+2 a_{2}+2 a_{3} \leq 1$ and $F$ is strongly monotonic increasing wich is a contradiction unless $u=\theta$. Hence $d\left(x_{n+1}, x_{n}\right) \rightarrow \theta$ as $n \rightarrow \infty$ (8).
Next
we show that $\left\{x_{n}\right\}$ is a Cauchy sequence.
If $\left\{x_{n}\right\}$ is not a Cauchy sequence then there exists $c \in \mathbb{A}$ such that $\forall n_{0} \in \mathbb{N}, \exists n, m \in \mathbb{N}$ with $n>m \geq n_{0}$
$F(c) \preceq d\left(x_{n}, x_{m}\right)$.Therefore there exists sequences $\left\{m_{k}\right\}$ and $\left\{n_{k}\right\}$ in $\mathbb{N}$ such that for all positive integers $k, n_{k}>m_{k}>k$ and
$d\left(x_{n_{(k)}}, x_{m_{(k)}}\right) \succeq \phi(c)$ and $d\left(x_{n_{(k)-1}}, x_{m_{(k)}} \preceq \phi(c)\right.$
then

$$
\phi(c) \preceq d\left(x_{n_{(k)}}, x_{m_{(k)}}\right) \preceq\left[d\left(x_{n_{(k)}}, x_{n_{(k)-1}}\right)+d\left(x_{n_{(k)-1}}, x_{m_{(k)}}\right)\right.
$$

that is

$$
\phi(c) \preceq d\left(x_{n_{(k)}}, x_{m_{(k)}}\right) \preceq\left[d\left(x_{n_{(k)}}, x_{n_{(k)-1}}\right)+\phi(c)\right]
$$

letting $k \rightarrow \infty$ we have

$$
\begin{equation*}
\lim _{k \rightarrow \infty} d\left(x_{n_{(k)}}, x_{m_{(k)}}\right)=\phi(c) \tag{9}
\end{equation*}
$$

again

$$
d\left(x_{n_{(k)}}, x_{m_{(k)}}\right) \preceq\left[d\left(x_{n_{(k)}}, x_{n_{(k)+1}}\right)+d\left(x_{n_{(k)+1}}, x_{m_{(k)+1}}\right)+d\left(x_{m_{(k)+1}}, x_{m_{(k)}}\right)\right]
$$

and

$$
d\left(x_{n_{(k)+1}}, x_{m_{(k)+1}}\right) \preceq\left[d\left(x_{n_{(k)+1}}, x_{n_{(k)}}\right)+d\left(x_{n_{(k)}}, x_{m_{(k)}}\right)+d\left(x_{m_{(k)}}, x_{m_{(k)+1}}\right)\right]
$$

letting $k \rightarrow \infty$ in above inequalities, we have

$$
\begin{equation*}
\lim _{k \rightarrow \infty} d\left(x_{n_{(k)+1}}, x_{m_{(k)+1}}\right)=\phi(c) \tag{10}
\end{equation*}
$$

Again

$$
d\left(x_{n_{(k)}}, x_{m_{(k)+1}}\right) \preceq\left[d\left(x_{n_{(k)}}, x_{m_{(k)}}\right)+d\left(x_{m_{(k)}}, x_{m_{(k)+1}}\right)\right]
$$

and

$$
d\left(x_{n_{(k)+1}}, x_{m_{(k)}}\right) \preceq\left[d\left(x_{n_{(k)+1}}, x_{n_{(k)}}\right)+d\left(x_{n_{(k)}}, x_{m_{(k)+1}}\right)+d\left(x_{m_{(k)+1}}, x_{m_{(k)}}\right)\right]
$$

Further,

$$
d\left(x_{n_{(k)+1}}, x_{m_{(k)}}\right) \preceq\left[d\left(x_{n_{(k)+1}}, x_{n_{(k)}}\right)+d\left(x_{n_{(k)}}, x_{m_{(k)}}\right)\right]
$$

and

$$
d\left(x_{n_{(k)}}, x_{m_{(k)}}\right) \preceq\left[d\left(x_{n_{(k)}}, x_{n_{(k)+1}}\right)+d\left(x_{n_{(k)+1}}, x_{m_{(k)}}\right)\right]
$$

Letting $k \rightarrow \infty$ in the above four inequalities we have

$$
\begin{equation*}
\lim _{k \rightarrow \infty} d\left(x_{n_{(k)}}, x_{m_{(k)+1}}\right)=\phi(c) \tag{11}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{k \rightarrow \infty} d\left(x_{n_{(k)+1}}, x_{m_{(k)}}\right)=\phi(c) \tag{12}
\end{equation*}
$$

Using (8), (9), (11), and (12) we have

$$
\begin{gather*}
\lim _{k \rightarrow \infty} M\left(x_{n_{(k)}}, x_{m_{(k)}}\right)=\lim _{k \rightarrow \infty} a_{1} d\left(x_{n_{(k)}}, x_{m_{(k)}}\right)+a_{2}\left[d\left(x_{n_{(k)}}, x_{\left.m_{(k)}\right)}\right)+d\left(x_{m_{(k)}}, x_{m_{(k)+1}}\right)\right]+ \\
a_{3}\left[d\left(x_{n_{(k)}}, x_{m_{(k)+1}}\right)+d\left(x_{m_{(k)}}, x_{n_{(k)+1}}\right)\right] \\
=\left(a_{1}+2 a_{2}\right) \phi(c) \tag{13}
\end{gather*}
$$

Clearly $x_{m_{k}} \preceq x_{n_{k}}$. Putting $x=x_{n_{(k)}}, y=x_{m_{(k)}}$

$$
F\left(d\left(x_{n_{(k)+1}}, x_{m_{(k)+1}}\right)\right)=F\left(d\left(T x_{n_{(k)}}, T x_{m_{(k)}}\right)\right) \preceq F\left(M\left(x_{n_{(k)}}, x_{m_{(k)}}\right)\right)-\phi\left(x_{n_{(k)}}, x_{m_{(k)}}\right)
$$

Letting $k \rightarrow \infty$ in the above inequality using (9), (10) $\operatorname{and}(13)$ and the continuities of $F$ and $\phi$ we have

$$
F(\phi(c)) \preceq F\left(\left(a_{1}+2 a_{2}\right) \phi(c)\right)-\phi(\phi(c))
$$

that is
$F(\phi(c)) \preceq F(\phi(c))-\phi(\phi(c))$,(since $\left.\left(a_{1}+2 a_{2}\right)<1\right)$ and $F$ is strongly monotonic increasing .Which a contradiction by virtue of a proprety of $\phi$. Hence $\left\{x_{n}\right\}$ is a Cauchy sequence . From the completness of $X$, there exists $z \in X$ such that $x_{n} \rightarrow z$ as $n \rightarrow \infty$. Since $T$ is continous and $T x_{n} \rightarrow T z$ as $n \rightarrow \infty$ that is $\lim _{n \rightarrow \infty} x_{n+1}=T z$, that is $z=T z$. Hence $z$ is a fixed point of $T$.

Example 3.8. Let $X=[0,1]$ and $\mathbb{A}=\mathbb{C}$ with a norm $\|z\|=|z|$ be a $C^{*}$ - algebra.
We define $\mathbb{C}^{+}=\{z=(x, y) \in \mathbb{C} ; x=\operatorname{Re}(z) \geq 0, y=\operatorname{Im}(z) \geq 0\}$.
The partial order $\leq$ with respect to the $C^{*}-$ algebra $\mathbb{C}$ is the partial order in $\mathbb{C}, z_{1} \leq z_{2}$ if $\operatorname{Re}\left(z_{1}\right) \leq \operatorname{Re}\left(z_{2}\right)$ and $\operatorname{Im}\left(z_{1}\right) \leq \operatorname{Im}\left(z_{2}\right)$ for any two elements $z_{1}, z_{2}$ in $\mathbb{C}$.
Let $d: X \times X \rightarrow \mathbb{C}$
Suppose that $d(x, y)=(|x-y|,|x-y|)$ for $x, y \in X$.
Then,$(X, \mathbb{C}, d)$ is a $C^{*}$ - algebra valued metric space with the required propreties of theorem 3.8.

Let $F, \phi: \mathbb{C}^{+} \rightarrow \mathbb{C}^{+}$such that they can defined as follows:
for $t=(x, y) \in \mathbb{C}^{+}$,
$F(t)=\left\{\begin{array}{l}(x, y) \text { if } x \leq 1 \text { and } y \leq 1 \\ \left(x^{2}, y\right) \text { if } x>1, y \leq 1 \\ \left(x, y^{2}\right) \text { if } x \leq 1 \text { and } y>1 \\ \left(x^{2}, y^{2}\right) \text { if } x>1 \text { and } y>1\end{array}\right.$
and for $s=\left(s_{1}, s_{2}\right) \in \mathbb{C}^{+}$with $v=\min \left\{s_{1}, s_{2}\right\}$,
$\phi=\left\{\begin{array}{l}\left(\frac{v^{2}}{2}, \frac{v^{2}}{2}\right) \text { ifv } \leq 1 \\ \left(\frac{1}{2}, \frac{1}{2}\right) \text { ifv }>1\end{array}\right.$
Then $F$ and $\phi$ have the propreties mentioned in definitions 2.8 and 2.9.
Let $T: X \rightarrow X$ be defined as follows : $T(x)=\left\{\begin{array}{c}0 \text { if } 0 \leq x \leq \frac{1}{2} \\ \frac{1}{16} \text { if } \frac{1}{2}<x \leq 1\end{array}\right.$

Then , $T$ has the required properties montioned in theorem 3.8.
Let $a_{1}=\frac{1}{2}, a_{2}=\frac{1}{8}$ and $a_{3}=\frac{1}{8}$. It can be verified that

$$
F(d(T x, T y)) \preceq F(M(x, y))-\phi(d(x, y)) \text { for all } x, y \in X \text { with } y \preceq x
$$

the conditions of theorem 3.8 are satisfied .Here it is seen that 0 is a fixed point of $T$.
Theorem 3.9. Let $(X, \mathbb{A}, d)$ be a complete $C^{*}$-algebra valued metric space. Let $T: X \rightarrow X$ be $a(\phi, F)-$ Kannan-type $C^{*}$ - valued contraction. Then $T$ has a unique fixed point.

Proof. Since $T$ is a $(\phi, F)-$ Kannan-type $C^{*}$ - valued contraction, then exist $F$ and $\phi$ such that $F\left(d(T x, T y)+\phi(d(x, y)) \preceq F\left(\frac{d(x, T x)+d(y, T y)}{2}\right) \preceq F(M(x, y))\right.$. where $M(x, y)=$ $a_{1} d(x, y)+a_{2}[d(T x, y)+d(T y, x)]+a_{3}[d(T x, x)+d(T y, y)]$ with $a_{1}=0, a_{2}=0$ and $a_{3}=\frac{1}{2} \cdot A s$ in the proof of theorem 3.7 $T$ has a fixed point.

Theorem 3.10. Let $(X, \mathbb{A}, d)$ be a complete $C^{*}$-algebra valued metric space. Let $T: X \rightarrow X$ be a $(\phi, F)-$ Reich-type $C^{*}$ - valued contraction. Then $T$ has a unique fixed point.

Proof. By taking $a_{1}=\frac{1}{3}, a_{2}=0$ and $a_{3}=\frac{1}{3}$ we have

$$
F\left(d(T x, T y)+\phi(d(x, y)) \preceq F(M(x, y))=F\left(\frac{d(x, y)+d(x, T x)+d(y, T y)}{3}\right) .\right.
$$

As in the proof of Theorem 3.7 $T$ has a fixed point.

## 4. Acknowledgments

It is our great pleasure to thank the referee for his careful reading of the paper and for several helpful suggestions.

## References

[1] A. Amini-Harandi, A. Farajzadeh, D. O'Regan, R. Agarwal, Best proximity pairs for upper semicontinuous set-valued maps in hyperconvex metric spaces, Fixed Point Theory Appl. 2008 (2008) 648985. https: //doi.org/10.1155/2008/648985.
[2] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math. 3 (1922) 133-181.
[3] J. Collins, J. Zimmer, An asymmetric Arzelà-Ascoli theorem, Topol. Appl. 154 (2007) 2312-2322. https: //doi.org/10.1016/j.topol.2007.03.006.
[4] A. Farajzadeh, P. Chuadchawna, A. Kaewcharoen, Fixed point theorems for ( $\alpha, \eta, \psi, \xi$ ) -contractive multivalued mappings on $\alpha-\eta$-complete partial metric spaces, J. Nonlinear Sci. Appl. 9 (2016) 1977-1990.
[5] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for $\alpha-\psi$-contractive type mappings, Nonlinear Anal. Theory Methods Appl. 75 (4) (2012), 2154-2165. https://doi.org/10.1016/j.na.2011.10.014.
[6] B. Samet, Discussion on "A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces" by A. Branciari. Publ. Math. Debrecen, 76 (2010) 493-494.
[7] S. Sakai, $C^{*}$ - Algebras and $W^{*}$-Algebras, Spring, Berlin, 1971.
[8] H. Piri, P. Kumam, Some fixed point theorems concerning F-contraction in complete metric spaces, Fixed Point Theory Appl. 2014 (2014) 210. https://doi.org/10.1186/1687-1812-2014-210.
[9] M. Jleli, B. Samet, A new generalization of the Banach contraction principle, J. Inequal. Appl. 2014 (2014) 38. https://doi.org/10.1186/1029-242X-2014-38.
[10] N. Hussain, M.A. Kutbi, P. Salimi, Fixed Point Theory in $\alpha$-Complete Metric Spaces with Applications, Abstr. Appl. Anal. 2014 (2014) 280817. https://doi.org/10.1155/2014/280817.
[11] Z. Kadelburg, S. Radenovic, On generalized metric spaces: a survey, TWMS J. Pure Appl. Math. 5 (2014) 3-13.
[12] W.A. Kirk, N. Shahzad, Generalized metrics and Caristi's theorem, Fixed Point Theory Appl. 2013 (2013) 129. https://doi.org/10.1186/1687-1812-2013-129.
[13] Z. Ma, L. Jiang, H. Sun, $C^{*}$-algebra valued metric spaces and related fixed point theorems, Fixed point Theory Appl. 2014 (2014), 206. https://doi.org/10.1186/1687-1812-2014-206.
[14] H. Piri, S. Rahrovi, H. Marasi, P. Kumam, $F$-contraction on asymmetric metric spaces, J. Math. Computer Sci. 17 (2017) 32-40. http://doi.org/10.22436/jmcs.017.01.03.
[15] H. Piri, S. Rahrovi, R. Zarghami, Some fixed point theorems on generalized asymmetric metric spaces, Asian-European J. Math. 14 (2021) 2150109. https://doi.org/10.1142/S1793557121501096.
[16] H. Lakzian, B. Samet, Fixed point for $(\psi-\varphi)$-weakly contractive mappings in generalized metric spaces, Appl. Math. Lett. 25 (2012) 902-906. https://doi.org/10.1016/j.aml.2011.10.047.
[17] I. R. Sarma, J. M. Rao, S. S. Rao, Contractions over generalized metric spaces, J. Nonlinear Sci. Appl. 2 (2009) 180-182.
[18] A. Taheri, A. Farajzadeh, A new generalization of $\alpha$-type almost- $F$-contractions and $\alpha$-type $F$-Suzuki contractions in metric spaces and their fixed point theorems, Carpathian Math. Publ. 11 (2019) 475-492.
[19] D. Wardowski Solving existence problems via F- contractions. Proc. Amer. Math. Soc. 146 (2018) 15851598. https://doi.org/10.1090/proc/13808.
[20] D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl. 2012 (2012) 94. https://doi.org/10.1186/1687-1812-2012-94.
[21] P. Zangenehmehr, A. P. Farajzadeh, S. M. Vaezpour, On fixed point theorems for monotone increasing vector valued mappings via scalarizing, Positivity 19 (2015) 333-340. https://doi.org/10.1007/ s11117-014-0299-z.
[22] K. Zhu, An Introduction to operator Algebras, CRC Press, Boca Raton, FL, USA, 1961.


[^0]:    ${ }^{1}$ Laboratory of Partial Differential Equations, Spectral Algebra and Geometry Department of Mathematics, Faculty of Sciences, University Ibn Tofail, B. P. 133 Kenitra, Morocco
    ${ }^{2}$ LaSma Laboratory Department of Mathematics Faculty of Sciences, Dhar El Mahraz University Sidi Mohamed Ben Abdellah, B. P. 1796 Fes Atlas, Morocco
    *Corresponding author
    E-mail addresses: massithafida@yahoo.fr, rossafimohamed@gmail.com.
    Key words and phrases. fixed point; $C^{*}$-algebra valued metric spaces; $C^{*}$-algebra valued; $(\phi, F)$-contraction. Received 28/08/2021.

