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FIXED POINT THEOREM FOR (φ, F )−CONTRACTION ON C∗-ALGEBRA
VALUED METRIC SPACES

HAFIDA MASSIT1,∗ AND MOHAMED ROSSAFI2

Abstract. Recently, a new type of mapping called (φ, F )−contraction was introduced in the
literature as a generalization of the concepts of contractive mappings. This present article
extends the new notion in C∗-algebra valued metric spaces and establishing the existence and
uniqueness of fixed point for them. Non-trivial examples are further provided to support the
hypotheses of our results.

1. Introduction

Banach’s contraction principle is a fundamental result in fixed point theory. Due to its
importance, several authors have obtained many interesting extensions and generalizations
see [1, 4, 8, 19, 21]. This approach is particularly associated with the work of Picard, although
it was Stefan Banach who in 1922 in [2] developed the ideas involved in an abstract setting.
Many generalizations of the concept of metric spaces are defined and some fixed point theorems
were proved in these spaces. In particular, C∗-algebra valued metric spaces were introduced by
Ma et al [13] as a generalization of metric spaces they proved certain fixed point theorems, by
giving the definition of C∗-algebra valued contractive mapping analogous to Banach contraction
principle. many mathematicians worked on this interesting space.

Various fixed point results were established on such spaces, see [6, 9, 11, 12, 16, 17] and refer-
ences therein.

Combining conditions used for definitions of C∗-algebra valued metric and generalized metric
spaces, Piri et al [15] announced the notions of C∗-algebra valued metric space and establish
nice results of fixed point on such space.

In this paper, inspired by the work done in [14, 18], we introduce the notion of
(φ, F )−contraction and establish some new fixed point theorems for mappings in the setting of
complete C∗-algebra valued metric spaces. Moreover, an illustrative examples is presented to
support the obtained results.
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2. preliminaries

Throughout this paper, we denote A by an unital (i.e ,unity element I) C∗-algebra with linear
involution ∗, such that for all x, y ∈ A,

(xy)∗ = y∗x∗,and x∗∗ = x.

We call an element x ∈ A a positive element, denote it by x � θ

if x ∈ Ah = {x ∈ A : x = x∗} and σ(x) ⊂ R+,where σ(x) is the spectrum of x.Using positive
element ,we can define a partial ordering � on Ah as follows :

x � y if and only if y − x � θ

where θ means the zero element in A.

we denote the set x ∈ A : x � θ by A+ and |x| = (x∗x)

1

2

Remark 2.1. When A is a unital C∗-algebra,then for any x ∈ A+ we have

x � I ⇐⇒ ‖x‖ ≤ 1

Definition 2.2. Let X be a non-empty set and d : X ×X → A+ be a mapping such that for
all x, y ∈ X and for all distinct points z ∈ X, each of them different from x and y, on has

(i) d(x, y) = θ if and only if x = y ; and θ � d(x, y) for all x, y ∈ X
(ii) d(x, y) = d(y, x) for all distinct points x, y ∈ X;
(iii) d(x, y) � d(x, z) + d(z, y) for all x, y, z ∈ X.

Then (X,A+, d) is called a C∗-algebra valued metric space.

Definition 2.3. [15] Let (X,A+, d) be a C∗-algebra valued metric space.
Suppose that {xn} ⊂ X and x ∈ X .
If for any ε > 0 there is N such that for all n,m > N ,‖d(xn, xm)‖ ≤ ε ,then {xn}n∈N is

called a Cauchy sequence with respect to A.
We say (X,A+, d) is a complete C∗-algebra valued metric space if every Cauchy sequence with
respect to A is convergent.
It is obvious that if X is a Banach space ,then (X,A+, d) is a complete C∗-algebra valued metric
space if we set

d(x, y) = ‖x− y‖I

Example 2.4. Consider X = R and A = M2(R)

Let d : X ×X →M2(R) be mapping defined by

d(x, y) = diag(|x− y|, α|x− y|)

where x, y ∈ R and α > 0 is a constant.It is clearly that d is a C∗-algebra valued metric and
(X,M2(R), d) is a complete C∗-algebra valued metric space by the completeness of R .

The following definition was given by D.Wardowski in [5].

Definition 2.5. [19] Let F be the family of all functions F : R+ → R and Φ be the family of
all functions φ :]0,+∞[→]0,+∞[ satisfying:

(i) F is strictly increasing ; ie for α, β ∈ R+ such that α < β ,F (α) < F (β).
(ii) For each sequence {xn}n∈N of positive numbers

lim
n→0

xn = 0, if and only if lim
n→∞

F (xn) = −∞;
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(iii) lim infs→α+φ(s) > 0 for all s > 0

(iv) There exists k ∈ ]0, 1[ such that limx→0 x
kF (x) = 0.

Definition 2.6. [20] Let (X, d) be a complete metric space. A mapping T : X → X is called
an (φ, F )− contraction on (X, d) if there exists F ∈ F and φ ∈ Φ such that

(d(Tx, Ty) > 0⇒ F (d(Tx, Ty) + φ(d(x, y)) ≤ F (d(x, y))

for all x, y ∈ X for which Tx 6= Ty

Theorem 2.7. Let (X, d) be a complete metric space and T : X → X be an (φ, F )− contraction.
Then T has a unique fixed point.

Definition 2.8. [22] Let the function φ : A+ → A+ be positive if having the following
constraints :

(i) φ is continous and nondecrasing
(ii) φ(a) = θ if and only if a = θ

(iii) limn−→∞φ
n(a) = θ

Definition 2.9. [22] Suppose that A and B are C∗-algebra .
A mapping φ : A→ B is said to be C∗- homomorphism if :

(i) φ(ax+ by) = aφ(x) + bφ(y) for all a, b ∈ C and x, y ∈ A
(ii) φ(xy) = φ(x)φ(y) for all x, y ∈ A
(iii) φ(x∗) = φ(x)∗ for all x ∈ A
(iv) φ maps the unit in A to the unit in B.

Definition 2.10. [22] Let A and B be C∗-algebra spaces and let φ : A → B be a homomor-
phism
then φ is called an ∗− homomorphism if it is one to one ∗− homomorphism.
A C∗-algebra A is ∗−isomorphic to a C∗-algebra B if there exists ∗− isomorphism of A onto
B.

Lemma 2.11. [7] Let A and B be C∗-algebra spaces and φ : A→ B

is a C∗− homomorphism for all x ∈ A we have

σ(φ(x)) ⊂ σ(x) and ‖φ(x)‖ ≤ ‖φ‖.

Corollary 2.12. [22] Every C∗− homomorphism is bounded.

Corollary 2.13. [22] Suppose that φ is C∗− isomorphism from A to B,
then σ(φ(x)) = σ(x) and ‖φ(x)‖ = ‖φ‖ for all x ∈ A.

Lemma 2.14. [22] Every ∗− homomorphism is positive.

3. Main result

Aspired by Wardowski in [10], we introduce the notion of (φ, F )-contraction on C∗-algebra
valued metric space.

Definition 3.1. Let

F : A+ → A+

https://doi.org/10.28919/ejma.2021.1.14
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a function satisfying:
(i) F is continuous and nondecreasing .
(ii) F (t) = θ if and only if t = θ.

1. A mapping T : X → X is said to be a (φ, F ) C∗ valued contraction of type (I)

if there exists φ : A+ → A+ an ∗− homomorphism such that

∀x, y ∈ X (d(Tx, Ty) � θ ⇒ F (d(Tx, Ty) + φ(d(x, y)) � F (d(x, y)) , (1)

2. A mapping T : X → X is said to be a (φ, F ) C∗ valued contraction of type (II)

if there exists φ : A+ → A+ an ∗− homomorphism satisfying:
(a) φ(a) ≺ a for a ∈ A+

(b) Either φ(a) � d(x, y) or d(x, y) � φ(a), where a ∈ A+ and x, y ∈ X
(c) F (a) ≺ φ(a) Such that

(d(Tx, Ty) � θ ⇒ F (d(Tx, Ty) + φ(d(x, y)) � F (M(x, y))

WhereM(x, y) = a1d(x, y)+a2[d(Tx, y)+d(Ty, x)]+a3[d(Tx, x)+d(Ty, y)], with a1, a2, a3 ≥ 0

,a1 + 2a2 + 2a3 ≤ 1

3. T is said to be (φ, F )− Kannan-type C∗− valued contraction if there exist φ satisfy (a) , (b)

and (c) such that (d(Tx, Ty) � θ we have

F (d(Tx, Ty) + φ(d(x, y)) � F (
d(x, Tx) + d(y, Ty)

2
).

4. T is said to be (φ, F )− Reich-type C∗− valued contraction if there exist φ satisfy (a) , (b)

and (c) such that (d(Tx, Ty) � θ we have

F (d(Tx, Ty) + φ(d(x, y)) � F (
d(x, y) + d(x, Tx) + d(y, Ty)

3
).

Example 3.2. Let X = [0, 1] and A = R2 Then A is a C∗− algebra with norm ‖.‖ : A → R
defined by

‖(x, y)‖ = (x2 + y2)
1
2 .

Define a C∗− algebra valued metric d : X ×X → A on X by

d(x, y) = (|x− y|, 0)

With ordering on A by

(a, b) � (c, d) ⇔ a ≤ c and b ≤ d

A mapping T : X → X given by Tx =
x

3
is continuous with respect to A.

Let F : A+ → A+. Defined by

F (x, y) = ((x− y)2, 0)

It is clear that F satisfies (i) and (ii)

We have F (d(Tx, Ty)) = F (d(
x

3
,
y

3
)) = F ((

x

3
− y

3
))2, 0).

And (
x

3
− y

3
))2− (x− y)2 ≤ −1

3
(x− y)2. Therefore T is a valued (φ, F ) C∗ -valued contraction

of type (I) with φ(d(x, y)) = (
1

3
(x− y)2, 0).

Example 3.3. Let X = [0, 1] ∪ {2, 3, 4, ...} and A = C with a norm || z ||=| z | be a C∗−
algebra.We define C+ = {z = (x, y) ∈ C;x = Re(z) ≥ 0, y = Im(z) ≥ 0} .
The partial order ≤ with respect to the C∗− algebra C is the partial order in C, z1 ≤ z2 if

https://doi.org/10.28919/ejma.2021.1.14
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Re(z1) ≤ Re(z2) and Im(z1) ≤ Im(z2) for any two elements z1, z2 in C.
Let d : X ×X → C

d(x, y) = {
(|x− y| , |x− y|) if x, y ∈ [0, 1], x 6= y

(x+ y, x+ y) if at least one of x or y 6∈ [0, 1] and x 6= y

(0, 0)if x = y

Then (X,A, d) be a complete C∗-algebra valued metric space.
Let F : C+ → C be defined as

F (t) = { t if t ∈ [0, 1],

t2, if t > 1

It is clear that F satisfies(i) and (ii) Let T : X → X be defined as

T (x) = { x−
1

2
x2 if x ∈ [0, 1],

x− 1, if x ∈ {2, 3, 4, ...}
Without loss of generality, we assume that x > y and discuss the following cases.
Case 1(x ∈ [0; 1]).
Then

F (d(Tx, Ty)) = ((x− 1

2
x2)− (y − 1

2
y2), (x− 1

2
x2)− (y − 1

2
y2))

= ((x− y)− 1

2
(x− y)(x+ y), (x− y)− 1

2
(x− y)(x+ y))

≤ ((x− y)− 1

2
((x− y))2, (x− y)− 1

2
((x− y))2)

= d(x, y)− 1

2
(d(x, y))2

= F (d(x, y))− 1

2
(d(x, y))2

Then there exists φ such φ(d(x, y)) =
1

2
(d(x, y))2 and

∀x, y ∈ X (d(Tx, Ty) ≥ 0⇒ F (d(Tx, Ty) + φ(d(x, y)) ≤ F (d(x, y)).

Case 2(x ∈ {3, 4, ...}) .
Then

d(Tx, Ty) = d(x− 1, y − 1

2
y2) if y ∈ [0, 1]

or

d(Tx, Ty) = (x− 1 + y − 1

2
y2, x− 1 + y − 1

2
y2) ≤ (x+ y − 1, x+ y − 1)

d(Tx, Ty) = d(x− 1, y − 1) if y ∈ {2, 3, 4, ...}
or

d(Tx, Ty) = (x+ y − 2, x+ y − 2) < (x+ y − 1, x+ y − 1)

.
Consequently

F (d(Tx, Ty)) = (d(Tx, Ty))2 ≤ ((x+ y − 1)2, (x+ y − 1)2)

< ((x+ y − 1)(x+ y + 1), (x+ y − 1)(x+ y + 1))

https://doi.org/10.28919/ejma.2021.1.14
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= ((x+ y)2 − 1, (x+ y)2 − 1) < ((x+ y)2 − 1

2
, (x+ y)2 − 1

2
)

= F (d(x, y))− 1

2
Case 3(x = 2).
Then y ∈ [0, 1] ,Tx = 1,
and

d(Tx, Ty) = (1− (y − 1

2
y2), 1− (y − 1

2
y2))

So, we have F (d(Tx, Ty)) ≤ F (1) = 1.
Again d(x, y) = (2 + y, 2 + y).
So,

1 = F (d(Tx, Ty)) ≤ F (d(x, y))− 1

2

Example 3.4. Let X = {1

2
,
1

3
,
1

4
, 1}. Let A+ = {(x, y) ∈ R2 : x, y ≥ 0}.

Define d : X ×X → A+ as follows:

{

d(x, y) = d(y, x) for x, y ∈ X,
d(x, y) = (0, 0)⇔ x = y

d(
1

2
, 1) = (0.5, 0.5)

d(
1

2
,
1

4
) = (2, 3)

d(
1

2
,
1

3
) = (2, 2.5)

d(1,
1

3
) = (2, 2.5)

d(1,
1

4
) = (2.3)

d(
1

3
,
1

4
) = (2, 2.6)

Let F, φ : R2 → R2 such that they can defined as follows:
for t = (x, y) ∈ R2 ,

F (t) = {

(x, y) ifx ≤ 1 and y ≤ 1

(x2, y) ifx > 1, y ≤ 1

(x, y2) ifx ≤ 1 and y > 1

(x2, y2) ifx > 1 and y > 1

and for s = (s1, s2) ∈ R2 with v = min{s1, s2},

φ = {
(
v2

2
,
v2

2
) ifv ≤ 1

(
1

2
,
1

2
) ifv > 1

Define mapping T : X → X by T (
1

2
) = 1 , T (1) = 1 , T (

1

4
) =

1

2
and T (

1

3
) = 1.

Then T can verified that

F (d(Tx, Ty) + φ(d(x, y)) � F (M(x, y))

for a1 =
1

2
, a2 =

1

8
and a3 =

1

8
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Theorem 3.5. Let (X,A, d) be a complete C∗-algebra valued metric space and let T : X → X

be a (φ, F )-contraction mapping of type (I).
Then T has a unique fixed point x∗ ∈ X and for every x0 ∈ X a sequence {T nx0}n∈N is
convergent to x∗.

Proof. : First ,let us observe that T has at most one fixed point.
Indeed if

x∗1 ;x∗2 ∈ X Tx∗1 = x∗1 6= x∗2 = Tx∗2

then we get

φ(d(x, y)) � F (d(x∗1;x
∗
2)− F (d(Tx∗1;Tx

∗
2)) = θ

wich is a contradiction.
In order to show that thas a fixed point let x0 ∈ X be arbitrary and fixed we define a sequence

{xn}n∈N ⊂ X ;xn+1 = Txn, n = 0; 1; 2....

denote

dn = d(xn+1;xn);n = 0; 1; 2; ...

if there exists n0 ∈ N for which xn0+1 = xn0 then Txn0 = xn0 and the proof is finished.
Suppose now that xn+1 6= xn for every n ∈ X then dn � θ for all n ∈ N and using (1) the

following holds for every n ∈ N

F (dn) � F (dn−1)− φ(dn−1) ≺ F (dn−1) (2)

Hence F is non decreasing and so the sequence (dn) is monotonically decreasing in A+. So
there exists θ � t ∈ A+ such that

d(xn, xn+1)→ t as n→∞

From (2) we obtain limn→∞F (dn) = θ that together with (ii) gives

limn→∞dn = θ (3)

Now we shall show that {xn} is a Cauchy sequence in (X,A, d).To prove it ,we shall that

limn→∞dn = θ.

Assume that {xn} is not a Cauchy sequence in (X,A, d) .
Then exist ε > 0 and subsequences {xmk

} and {xnk
} with nk > mk > k such that

‖d(xmk
, xnk

)‖ ≥ ε

Now , corresponding to mk , wecan choose nk such that it isthe smallest integr with nk > mk

and satisfing above inequality. Hence

‖d(xmk
, xnk−1

)‖ < ε

https://doi.org/10.28919/ejma.2021.1.14
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So we have

ε ≤ ‖d(xmk
, xnk

)‖ ≤ ‖d(xmk
, xnk−1

)‖+ ‖d(xnk−1
, xnk

)‖ ≤ ε+ ‖d(xnk−1
, xnk

)‖
Using (3) we have

ε ≤ limk→∞‖d(xmk
, xnk

)‖ < ε+ θ.

This implies

limk→∞‖d(xmk
, xnk

)‖ = ε. (4)

Again,

‖d(xnk
, xmk

)‖ ≤ ‖d(xnk
, xnk−1

)‖+ ‖d(xnk−1
, xmk

)‖

≤ ‖d(xnk
, xmk−1

)‖+ ‖d(xnk−1
, xmk−1

)‖+ ‖d(xmk−1
, xmk

)‖ (5)

Also,

‖d(xnk−1
, xmk−1

)‖ ≤ ‖d(xnk−1
, xnk

)‖+ ‖d(xnk
, xmk−1

)‖‖d(xnk−1
, xnk

)‖

+ ‖d(xnk
, xmk

)‖+ ‖d(xmk
, xmk−1

)‖. (6)

Letting k →∞ in (5) and (6) and using (4) we have

limk→∞‖d(xnk−1
, xmk−1

)‖ = ε.

Since d(xnk−1
, xmk−1

) , d(xnk
, xmk

) ∈ A+ and

limk→∞‖d(xnk−1
, xmk−1

)‖ = limk→∞‖d(xnk
, xmk

)‖ = ε

. there is exists s ∈ A+ with ‖s‖ = ε such that

limk→∞‖d(xnk−1
, xmk−1

)‖ = limk→∞‖d(xnk
, xmk

)‖ = s (7)

by 7 we have

F (s) = limk→∞F (d(xnk
, xmk

)) � limk→∞F (d(xnk−1
, xmk−1

))

Therefore

F (s) ≺ F (s)

Thus F (s) = θ and so s = θ which is a contradiction .Hence {xn} is a Cauchy sequence in
(X,A, d). Hence there exist z ∈ X such that

limn→∞d(xn, z) = θ

Now ,we shall show that z is fixed point of T .Using (7) ,we get

F (d(xn, T z)) ≺ F (d(xn−1, z))

Letting n→∞ and using the concept of continuity of the function of T .
We have d(z, Tz) = θ.Hence by Definition 2.2 ,we have Tz = z.
wich completes the proof.

�
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Eur. J. Math. Appl. | https://doi.org/10.28919/ejma.2021.1.14 9

Example 3.6. Considering all cases in Example 3.3 , we conclude that inequality (1) remains
valid for F and T constructed as above and consequently by an application of Theorem 3.4 ,T
has a unique fixed point.
it is seen that 0 is the unique fixed point of T .

Theorem 3.7. Let (X,A, d) be a complete C∗-algebra valued metric space.
Let T : X → X be a (φ, F ) of type (II), i.e, there exist F and φ two ∗− homomorphisms

such that for any x, y ∈ X we have

(d(Tx, Ty) � θ ⇒ F (d(Tx, Ty) + φ(d(x, y)) � F (M(x, y))

Where M(x, y) = a1d(x, y)+a2[d(Tx, y)+d(Ty, x)]+a3[d(Tx, x)+d(Ty, y)], with a1, a2, a3 ≥ 0

,a1 + 2a2 + 2a3 ≤ 1.
Then, T has a fixed point.

Proof. Let x0 ∈ X and define x1 = Tx0, x2 = Tx1, ..., xn = Txn−1.
We have

F (d(xn+2, xn+1)) = F (d(Txn+1, Txn)) � F (M(xn+1, xn)) + φ(d(xn+1, xn)) = F (a1d(xn+1, xn) +

a2[d(xn+2, xn) + d(xn+1, xn+1)] + a3[d(xn+2, xn+1) + d(xn+1, xn)])− φ(d(xn+1, xn)).

Then we have

F (d(xn+2, xn+1)) �
F (a1d(xn+1, xn) + a2[d(xn+2, xn) + d(xn+1, xn+1)] + a3[d(xn+2, xn+1) + d(xn+1, xn)])

Using the strongly monotone proprety of F , we have
d(xn+2, xn+1) � a1d(xn+1, xn) +a2[d(xn+2, xn) +d(xn+1, xn+1)] +a3[d(xn+2, xn+1) +d(xn+1, xn)].
That is

(1− a2 − a3)d(Txn+1, Txn) � (a1 + a2 + a3)d(xn+1, xn).

Therefore

d(xn+2, xn+1) �
a1 + a2 + a3
1− a2 − a3

d(xn+1, xn).

Wich implies that

d(xn+2, xn+1) � d(xn+1, xn).

Since

a1 + a2 + a3
1− a2 − a3

< 1

Therefore {d(xn+1, xn)} is monotone decreasing sequence. There exists u ∈ A+ such that
d(xn+1, xn)→ u as n→∞.
Taking n→∞ in

F (d(xn+2, xn+1)) �
F (a1d(xn+1, xn) + a2[d(xn+2, xn) + d(xn+1, xn+1)] + a3[d(xn+2, xn+1) + d(xn+1, xn)])

https://doi.org/10.28919/ejma.2021.1.14
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Using the continuities of F and φ, we have

F (u) � F ((a1 + 2a2 + 2a3)u)− φ(u)

wich implies that F (u) � F (u)− φ(u) since a1 + 2a2 + 2a3 ≤ 1 and F is strongly monotonic
increasing wich is a contradiction unless u = θ. Hence d(xn+1, xn)→ θ as n→∞ (8).
Next
we show that {xn} is a Cauchy sequence.
If {xn} is not a Cauchy sequence then there exists c ∈ A such that ∀n0 ∈ N ,∃n,m ∈ N with
n > m ≥ n0

F (c) � d(xn, xm).Therefore there exists sequences {mk} and {nk} in N such that for all
positive integers k, nk > mk > k and
d(xn(k)

, xm(k)
) � φ(c) and d(xn(k)−1

, xm(k)
� φ(c)

then

φ(c) � d(xn(k)
, xm(k)

) � [d(xn(k)
, xn(k)−1

) + d(xn(k)−1
, xm(k)

)

that is

φ(c) � d(xn(k)
, xm(k)

) � [d(xn(k)
, xn(k)−1

) + φ(c)]

letting k →∞ we have

limk→∞d(xn(k)
, xm(k)

) = φ(c) (9)

again

d(xn(k)
, xm(k)

) � [d(xn(k)
, xn(k)+1

) + d(xn(k)+1
, xm(k)+1

) + d(xm(k)+1
, xm(k)

)]

and

d(xn(k)+1
, xm(k)+1

) � [d(xn(k)+1
, xn(k)

) + d(xn(k)
, xm(k)

) + d(xm(k)
, xm(k)+1

)]

letting k →∞ in above inequalities , we have

limk→∞d(xn(k)+1
, xm(k)+1

) = φ(c) (10)

Again

d(xn(k)
, xm(k)+1

) � [d(xn(k)
, xm(k)

) + d(xm(k)
, xm(k)+1

)]

and

d(xn(k)+1
, xm(k)

) � [d(xn(k)+1
, xn(k)

) + d(xn(k)
, xm(k)+1

) + d(xm(k)+1
, xm(k)

)]

Further,

d(xn(k)+1
, xm(k)

) � [d(xn(k)+1
, xn(k)

) + d(xn(k)
, xm(k)

)]

and

d(xn(k)
, xm(k)

) � [d(xn(k)
, xn(k)+1

) + d(xn(k)+1
, xm(k)

)]

Letting k →∞ in the above four inequalities we have

limk→∞d(xn(k)
, xm(k)+1

) = φ(c) (11)
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limk→∞d(xn(k)+1
, xm(k)

) = φ(c) (12)

Using (8), (9), (11), and (12) we have

limk→∞M(xn(k)
, xm(k)

) = limk→∞a1d(xn(k)
, xm(k)

) + a2[d(xn(k)
, xm(k)

) + d(xm(k)
, xm(k)+1

)] +

a3[d(xn(k)
, xm(k)+1

) + d(xm(k)
, xn(k)+1

)]

= (a1 + 2a2)φ(c) (13)

Clearly xmk
� xnk

.Putting x = xn(k)
,y = xm(k)

F (d(xn(k)+1
, xm(k)+1

)) = F (d(Txn(k)
, Txm(k)

)) � F (M(xn(k)
, xm(k)

))− φ(xn(k)
, xm(k)

)

Letting k →∞ in the above inequality using (9), (10) and(13) and the continuities of F and
φ we have

F (φ(c)) � F ((a1 + 2a2)φ(c))− φ(φ(c))

that is
F (φ(c)) � F (φ(c)) − φ(φ(c)) ,(since (a1 + 2a2) < 1) and F is strongly monotonic increasing
.Which a contradiction by virtue of a proprety of φ. Hence {xn}is a Cauchy sequence .From
the completness of X, there exists z ∈ X such that xn → z as n → ∞. Since T is continous
and Txn → Tz as n→∞ that is limn→∞xn+1 = Tz, that is z = Tz. Hence z is a fixed point
of T . �

Example 3.8. Let X = [0, 1] and A = C with a norm || z ||=| z | be a C∗− algebra.
We define C+ = {z = (x, y) ∈ C;x = Re(z) ≥ 0, y = Im(z) ≥ 0} .
The partial order ≤ with respect to the C∗− algebra C is the partial order in C, z1 ≤ z2 if
Re(z1) ≤ Re(z2) and Im(z1) ≤ Im(z2) for any two elements z1, z2 in C.
Let d : X ×X → C
Suppose that d(x, y) = (| x− y |, | x− y |) for x, y ∈ X .
Then ,(X,C, d) is a C∗− algebra valued metric space with the required propreties of theorem
3.8.
Let F, φ : C+ → C+ such that they can defined as follows:
for t = (x, y) ∈ C+ ,

F (t) =


(x, y) ifx ≤ 1 and y ≤ 1

(x2, y) ifx > 1, y ≤ 1

(x, y2) ifx ≤ 1 and y > 1

(x2, y2) ifx > 1 and y > 1

and for s = (s1, s2) ∈ C+ with v = min{s1, s2},

φ =


(
v2

2
,
v2

2
) ifv ≤ 1

(
1

2
,
1

2
) ifv > 1

Then F and φ have the propreties mentioned in definitions 2.8 and 2.9.

Let T : X → X be defined as follows : T (x) =


0 if0 ≤ x ≤ 1

2

1

16
if

1

2
< x ≤ 1
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Then ,T has the required properties montioned in theorem 3.8.

Let a1 =
1

2
,a2 =

1

8
and a3 =

1

8
. It can be verified that

F (d(Tx, Ty)) � F (M(x, y))− φ(d(x, y)) for all x, y ∈ X with y � x

the conditions of theorem 3.8 are satisfied .Here it is seen that 0 is a fixed point of T .

Theorem 3.9. Let (X,A, d) be a complete C∗-algebra valued metric space. Let T : X → X be
a (φ, F )− Kannan-type C∗− valued contraction.Then T has a unique fixed point.

Proof. Since T is a (φ, F )− Kannan-type C∗− valued contraction, then exist F and φ such

that F (d(Tx, Ty) + φ(d(x, y)) � F (
d(x, Tx) + d(y, Ty)

2
) � F (M(x, y)). where M(x, y) =

a1d(x, y) + a2[d(Tx, y) + d(Ty, x)] + a3[d(Tx, x) + d(Ty, y)] with a1 = 0,a2 = 0 and a3 =
1

2
.As

in the proof of theorem 3.7 T has a fixed point.
�

Theorem 3.10. Let (X,A, d) be a complete C∗-algebra valued metric space. Let T : X → X

be a (φ, F )− Reich-type C∗− valued contraction.Then T has a unique fixed point.

Proof. By taking a1 =
1

3
,a2 = 0 and a3 =

1

3
we have

F (d(Tx, Ty) + φ(d(x, y)) � F (M(x, y)) = F (
d(x, y) + d(x, Tx) + d(y, Ty)

3
).

As in the proof of Theorem 3.7 T has a fixed point. �
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