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FIXED POINT THEOREM FOR (¢, F)-CONTRACTION ON C*-ALGEBRA
VALUED METRIC SPACES

HAFIDA MASSIT!* AND MOHAMED ROSSAFI?

ABSTRACT. Recently, a new type of mapping called (¢, F')—contraction was introduced in the
literature as a generalization of the concepts of contractive mappings. This present article
extends the new notion in C*-algebra valued metric spaces and establishing the existence and
uniqueness of fixed point for them. Non-trivial examples are further provided to support the

hypotheses of our results.

1. INTRODUCTION

Banach’s contraction principle is a fundamental result in fixed point theory. Due to its
importance, several authors have obtained many interesting extensions and generalizations
see [1,4,8,19,21]. This approach is particularly associated with the work of Picard, although
it was Stefan Banach who in 1922 in [2] developed the ideas involved in an abstract setting.
Many generalizations of the concept of metric spaces are defined and some fixed point theorems
were proved in these spaces. In particular, C*-algebra valued metric spaces were introduced by
Ma et al [13] as a generalization of metric spaces they proved certain fixed point theorems, by
giving the definition of C*-algebra valued contractive mapping analogous to Banach contraction
principle. many mathematicians worked on this interesting space.

Various fixed point results were established on such spaces, see [6,9,11,12,16,17] and refer-
ences therein.

Combining conditions used for definitions of C*-algebra valued metric and generalized metric
spaces, Piri et al [15] announced the notions of C*-algebra valued metric space and establish
nice results of fixed point on such space.

In this paper, inspired by the work done in [l4, 18], we introduce the notion of
(¢, F')—contraction and establish some new fixed point theorems for mappings in the setting of
complete C*-algebra valued metric spaces. Moreover, an illustrative examples is presented to
support the obtained results.
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2. PRELIMINARIES

Throughout this paper, we denote A by an unital (i.e ,unity element I) C*-algebra with linear
involution %, such that for all z,y € A,

(ry)* = y*x*,and z** = .

We call an element € A a positive element, denote it by x > 6
ifeeAp,={re€A:x=2"} and o(x) C Ry,where o(x) is the spectrum of x.Using positive
element ;we can define a partial ordering < on A, as follows :

r=<yifand only if y —x > 6

where 6 means the zero element in A. i
we denote the set z € Az = 60 by A, and |z| = (:1:*33)5

Remark 2.1. When A is a unital C*-algebra,then for any x € A, we have
3] <=Jz|| <1

Definition 2.2. Let X be a non-empty set and d: X x X — A, be a mapping such that for
all x,y € X and for all distinct points z € X, each of them different from x and y, on has
(i) d(z,y) =0 if and only if x =y ; and § < d(z,y) for all z,y € X
(i) d(z,y) = d(y, z) for all distinct points =,y € X;
(ili) d(z,y) 2 d(x,z) + d(z,y) for all z,y,z € X.
Then (X, A, d) is called a C*-algebra valued metric space.

Definition 2.3. [15] Let (X, A4, d) be a C*-algebra valued metric space.

Suppose that {z,} C X and z € X .

If for any € > 0 there is N such that for all n,m > N ,||d(zpn, zn)|| < € then {z,}, .y is
called a Cauchy sequence with respect to A.
We say (X, A, d) is a complete C*-algebra valued metric space if every Cauchy sequence with
respect to A is convergent.
It is obvious that if X is a Banach space ,then (X, A, d) is a complete C*-algebra valued metric
space if we set

d(z,y) = [l —yl1

Example 2.4. Consider X = R and A = M(R)
Let d: X x X — Mjy(R) be mapping defined by

d(x,y) = diag(|lzr — yl, alr — yl)

where z,y € R and « > 0 is a constant.It is clearly that d is a C*-algebra valued metric and
(X,My(R), d) is a complete C*-algebra valued metric space by the completeness of R .
The following definition was given by D.Wardowski in [5].

Definition 2.5. [19] Let F be the family of all functions F': R, — R and ® be the family of
all functions ¢ :]0, +00[—]0, +o0[ satisfying:
(i) F is strictly increasing ; ie for «, 5 € Ry such that a < 8 ,F(«a) < F(B).

(ii) For each sequence {w,}, .y of positive numbers

limz, =0, ifandonlyif lim F(x,)= —oc;
n—0 n—r00
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(iii) lim infs o+ P(s) > 0 for all s > 0
(iv) There exists k € ]0, 1[ such that lim,_,o z*F (z) = 0.

Definition 2.6. [20] Let (X, d) be a complete metric space. A mapping 7': X — X is called
an (¢, F')— contraction on (X, d) if there exists ' € F and ¢ € ® such that

(d(T, Ty) > 0 = F(d(Tx, Ty) + 6(d(x, ) < F(d(z,1))
for all z,y € X for which Tz # Ty

Theorem 2.7. Let (X, d) be a complete metric space andT : X — X be an (¢, F')— contraction.
Then T has a unique fixed point.

Definition 2.8. [22] Let the function ¢ : AT — A" be positive if having the following

constraints :
(i) ¢ is continous and nondecrasing
(ii) ¢(a) =6 if and only if a = 6
(iil) limy,—oo@™(a) =6
Definition 2.9. [22] Suppose that A and B are C*-algebra .
A mapping ¢ : A — B is said to be C*- homomorphism if :
(i) ¢(ax + by) = ap(x) + bo(y) for all a,b € C and x,y € A

(i) ¢(zy) = ¢(x)d(y) for all 2,y € A
(iii) ¢(z*) = ¢p(x)* for all z € A
v)

(i

Definition 2.10. [22] Let A and B be C*-algebra spaces and let ¢ : A — B be a homomor-
phism

¢ maps the unit in A to the unit in B.

then ¢ is called an x— homomorphism if it is one to one x— homomorphism.
A C*-algebra A is x—isomorphic to a C*-algebra B if there exists *— isomorphism of A onto
B.

Lemma 2.11. [7] Let A and B be C*-algebra spaces and ¢ : A — B

18 a C*— homomorphism for all x € A we have

o(p(x)) C o(x) and ||p(x)] <ol
Corollary 2.12. [22] Every C*— homomorphism is bounded.

Corollary 2.13. [22] Suppose that ¢ is C*— isomorphism from A to B,
then o(¢(x)) = o(x) and ||¢(x)|| = ||¢]|| for all x € A.

Lemma 2.14. [22] Every x— homomorphism is positive.

3. MAIN RESULT

Aspired by Wardowski in [10], we introduce the notion of (¢, F')-contraction on C*-algebra

valued metric space.

Definition 3.1. Let
F: A+ — A+
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a function satisfying:
(i) F is continuous and nondecreasing .
(ii) F(t) =0 if and only if t = 0.

1. A mapping T : X — X is said to be a (¢, F') C* valued contraction of type (I)
if there exists ¢ : A, — A, an *— homomorphism such that
Vr,y € X (d(Tz,Ty) = 0 = F(d(Tx, Ty) + ¢(d(x,y)) 2 Fd(z,y)), (1)
2. A mapping T : X — X is said to be a (¢, F') C* valued contraction of type (1)
if there exists ¢ : A, — A, an *— homomorphism satisfying:
(a) ¢(a) < aforae Ay
(b) Either ¢(a) < d(x,y) or d(z,y) < ¢(a), where a € A, and z,y € X
(¢) F(a) < ¢(a) Such that
(d(Tz,Ty) = 0 = F(d(Tz,Ty) + ¢(d(z,y)) 2 F(M(z,y))
Where M (z,y) = ard(z,y)+as[d(Tx,y)+d(Ty, x)]| +as[d(Tz, z) +d(Ty,y)], with ay, as, as > 0
,a1 4+ 2a9 + 2a3 <1
3. T issaid to be (¢, F')— Kannan-type C*— valued contraction if there exist ¢ satisfy (a) , (b)

and (c¢) such that (d(Tx,Ty) = 6 we have

F(d(Tw, Ty) + o(d(z,)) < pACTD AT,

4. T is said to be (¢, F')— Reich-type C*— valued contraction if there exist ¢ satisfy (a) , ()
and (c) such that (d(Txz,Ty) > 6 we have

d(z,y) +d(z, Tx) + d(y, Ty))
3 .

Example 3.2. Let X = [0,1] and A = R? Then A is a C*— algebra with norm |.|| : A - R

defined by

F(d(Tz,Ty) + ¢(d(z,y)) 2 F(

(@) = (@ + 7).
Define a C*— algebra valued metric d : X x X — A on X by
With ordering on A by
(a,b) = (¢,d) ©@a<candb<d

A mapping T : X — X given by Tx = g is continuous with respect to A.
Let F: A, — A . Defined by

F(z,y) = ((z —y)*,0)
It is clear that F satisfies (i) and (i7)
We have F(d(Tz, Ty)) = F(d(2,2)) = F((Z - £))2,0).

373 3 3
1

And (g — %))2 —(z—y)?* < —g(x —1y)?. Therefore T is a valued (¢, F') C* -valued contraction
1

of type (I) with ¢(d(z,y)) = (3(x — )2 0).

Example 3.3. Let X = [0,1] U {2,3,4,...} and A = C with a norm || z ||=| z | be a C*—
algebra.We define C* = {z = (z,y) € C;z = Re(z) > 0,y = Im(z) > 0} .
The partial order < with respect to the C*— algebra C is the partial order in C, z; < 2z if

w
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Re(z1) < Re(zz) and Im(z1) < Im(zs) for any two elements z1, zo in C.
Letd: X x X —- C

d(z,y) =1 (x+y,z+vy) if at leastoneof xory & [0,1] andx # y
0,0)ifz =y
Then (X, A, d) be a complete C*-algebra valued metric space.

Let F: C™ — C be defined as

tiftelo1],

Py =11 el
e, ift>1

It is clear that F' satisfies(i) and (ii) Let T': X — X be defined as

T — %:L‘Q if x€[0,1],

r—1, ifxe€{2,3,4,..}

Without loss of generality, we assume that x > y and discuss the following cases.
Case 1(z € [0;1]).

T(x) = {

Then
P ) = (o~ 32 <y—§y21>,<x—1x2>—<y—§y2>>
= ((z—y) ~ 3le =)+ 1), (&~ v) — 5~ o)z +)
< (e =) — 5@~ ) —9) — (=~ 1)?)
= d(x,y) ~ 3 (d(x,v))?
= Fd(z,y)) ~ 3 (d(r,y))"

Then there exists ¢ such ¢(d(x,y)) = %(d(:v,y))2 and
Ve,ye X (d(Tz,Ty) > 0= F(d(Tz,Ty) + ¢(d(z,y)) < F(d(x,y)).

Case 2(z € {3,4,...}) .

Then
d(Tz, Ty) =d(x — 1,y — %yQ) if y € [0,1]
or
d(Tx,Ty)=(r—1+y— %yz,x— 1+y— %yQ) <(z4+y—-lz+y—1)
d(Tz,Ty) =d(z — 1,y —1)ify € {2,3,4,...}
or
dTz,Ty) = (zr+y—2,204+y—2)<(z+y—1l,x+y—1)
Consequently

F(d(Tx,Ty)) = (d(Tz,Ty))? < ((z +y — 1)*, (z +y — 1)?)
<((z+y—Dx+y+1),(z+y—1)(x+y+1))
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= (e~ L@ty —1) < ()~ 5 (a4~ 5)

2
1
— Fld(r.y) - 5
Case 3(x = 2).
Then y € [0,1] Tz =1,
and

dUHATy)=(1—(y—-%yﬂ,1—(y—-%y5)

So, we have F(d(Tz,Ty)) < F(1) = 1.
Again d(z,y) = (2+y,2 + y).
So,

1= F(d(Tz,Ty)) < F(d(z,y)) —

N |

111
Example 3.4. Let X = {5, 3T 1}. Let Ay = {(z,y) e R* : z,y > 0}.

Define d: X x X — A, as follows:

d(z,y) =d(y,x) forx,y€ X,
d(z,y) = (0,0) &z =y
d(%, 1) = (0.5,05)
it %) ~ (2,3)
{ d(§,1§) — (2,2.5)
a1, §) _ (2,2.5)
a1, 11) _ (2.3)
d(%, 7 = (2.26)

Let F,¢ : R? — R? such that they can defined as follows:
for t = (z,y) € R? |

(r,y) ifr <1 andy <1

(2%y) ife > 1,y <1

(z,y*)ifr <landy > 1

(2%,9%) ifr >1landy > 1

and for s = (s1, 52) € R? with v = min{sy, s2},

F(t) = {

1 1 1 1
Define mapping 7 : X — X by T(§) =1,T7(1)=1 7T(Z) = — and T<§) =1

2
Then T can verified that

F(d(Tz, Ty) + ¢(d(z,y)) = F(M(z,y))
1
as = — and a3 = -
' 8

8

for a; =

DN | —
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Theorem 3.5. Let (X, A, d) be a complete C*-algebra valued metric space and let T : X — X
be a (¢, F')-contraction mapping of type (I).
Then T has a unique fived point zx € X and for every xy € X a sequence {T"x}nen is

convergent to xx*.

Proof. : First |let us observe that T has at most one fixed point.
Indeed if

xy xs € X Tay =] # oy =Tx;
then we get
¢(d(z,y)) = Fd(ay; 235) — F(d(Txy; Trs)) = 0

wich is a contradiction.

In order to show that thas a fixed point let o € X be arbitrary and fixed we define a sequence
{Zn}nen C X ;201 =Txp, n=0;1;2....
denote
dy = d(Tpi1;2,);n =0;1;2; ...

if there exists ng € N for which z,,,+; = x,, then T'z,, = z,,, and the proof is finished.
Suppose now that z,.; # x, for every n € X then d,, > 6 for all n € N and using (1) the
following holds for every n € N

F(dn> = F(dn—l) - ¢(dn—1> = F(dn—l) (2>
Hence F' is non decreasing and so the sequence (d,) is monotonically decreasing in A,. So

there exists § <t € A, such that

d(xp, Tpe1) = tas n— 0

From (2) we obtain lim, . F(d,) = 0 that together with (ii) gives
limy—ood, =0 (3)

Now we shall show that {z,} is a Cauchy sequence in (X, A, d).To prove it ,we shall that

Uiy, —oody,, = 0.

Assume that {x,} is not a Cauchy sequence in (X, A, d) .
Then exist ¢ > 0 and subsequences {z,,, } and {z,, } with n; > m; > k such that

Hd(xmm xmc) || >

Now , corresponding to my , wecan choose n; such that it isthe smallest integr with n, > my

and satisfing above inequality. Hence

[ d(@mys T ) < €
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So we have

& < ld(@my, Tn )| < Nd(@my, Tng )N+ 1d@n,_ys 2 )| < &+ [ld(@n, s 20,

Using (3) we have

e < limp_yoo||d(xpm,,, Tp,)|| < €+ 6.

This implies

i soel| (s, ) | = . (1)
Again,
(@, 2 )| < (g T )+ [[d(@n, s 2,
< Jd(@ny s Loy I+ [d(@n, s T )+ (@, 2 ) (5)
Also,

ld(@ns s T < N @ny s Tn) |+ @, T[Ty 20 )]
Flld(@ngs 2 )|+ (@ s T - (6)
Letting £k — oo in (5) and (6) and using (4) we have
limk—)OOHd(xnk—Nxmk—JH =E&.
Since d(xp, |, Tm, ,) , d(xn,, Tm,) € A} and
limi ool d(Tnyy s Ty )| = limisool|d(@n, Ty ) || = €
. there is exists s € A, with [|s]| = & such that
limk—>00||d(‘rnk717xmk71)|’ = lzmk—mOHd(xnk’xmk)H =S (7)
by 7 we have
F(s) = limg—oo F(d(Tn,, Ty, ) = limgoo F(d(Xny_ |y Ty )
Therefore
F(s) < F(s)

Thus F(s) = 6 and so s = 6 which is a contradiction .Hence {x,} is a Cauchy sequence in
(X, A, d). Hence there exist z € X such that

limy,ood(xy, 2) = 0
Now ,we shall show that z is fixed point of T .Using (7) ,we get
F(d(z,,Tz)) < F(d(zp_1,2))

Letting n — oo and using the concept of continuity of the function of T'.
We have d(z,Tz) = 6.Hence by Definition 2.2 ,we have Tz = z.

wich completes the proof.
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Example 3.6. Considering all cases in Example 3.3 , we conclude that inequality (1) remains
valid for F' and T constructed as above and consequently by an application of Theorem 3.4 | T
has a unique fixed point.

it is seen that 0 is the unique fixed point of 7'

Theorem 3.7. Let (X, A, d) be a complete C*-algebra valued metric space.
Let T : X — X be a (¢, F) of type (11), i.e, there exist F' and ¢ two *— homomorphisms
such that for any x,y € X we have
(d(Tz,Ty) = 0 = F(d(Tz, Ty) + ¢(d(z,y)) 2 F(M(z,y))

Where M (z,y) = ard(x,y) + a|d(Tx,y) +d(Ty, x)] + as[d(Tz, x) + d(Ty, y)|, with a1, as,a3 > 0
,a1 + 20,2 + 2@3 S 1.
Then, T has a fixed point.

Proof. Let xop € X and define x1 = Txg, 20 = Tx1,...;2, = Tx, 1.
We have

F(d(Tni2, Tni1)) = F(d(T2pi1, Tan)) 2 F(M(2041,20)) + O(d(Tni1, 20)) = Flard(Tngr, Tn) +
azd(Tni2, n) + d(Tpi1, Tgr)] + a3ld(@ni2, Togr) + d(Tpgr, ©0)]) — S(d(Tnga, T20)).

Then we have

F<d($n+2,$n+1)) =
F(ard(zps1,20) + ald(Xnso, Tn) + d(Zpg1, Togr)] + asld(Tnta, Tng1) + d(@p41, 0)])

Using the strongly monotone proprety of F, we have

d(Tpyo, Tny1) =X a1d(Tpyr, Tp) + a2 [d($n+27 Tp) +d(Tpq1, fL’n+1)] +as [d(:vn+2, Tpg1) +d(Tnqa, %)]
That is

(1 —as —a3)d(Trpi1, Tx,) 2 (a1 + ag + a3)d(Tpi1, Tn).

Therefore

a1 + as + as

dTL?’fl‘
=1ty — as (Tpi1, Tn)

d(l‘n+2, xn-{—l)

Wich implies that

d(l’n+2, xn-{—l) j d(l‘n-i-la xn)

Since

a) + az + ag

<1
1—(12—(13

Therefore {d(z,+1,z,)} is monotone decreasing sequence. There exists u € A, such that
d(Tpi1,%,) — u as n — 0.
Taking n — oo in

F(d(zny2, Tni1)) =
F(a1d<xn+17 xn) + ag [d(xn—&—% xn) + d(xn—l-l; xn—&—l)] + as [d(‘rn—&—% xn+1) + d(xn—l-lu xn)])
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Using the continuities of F' and ¢, we have

F(u) < F((a1 + 2as + 2a3)u) — ¢(u)

wich implies that F'(u) < F(u) — ¢(u) since a3 + 2as + 2a3 < 1 and F is strongly monotonic
increasing wich is a contradiction unless u = 0. Hence d(z,+1,2,) — 6 as n — oo (8).
Next
we show that {z,} is a Cauchy sequence.
If {z,} is not a Cauchy sequence then there exists ¢ € A such that Vng € N ;3n,m € N with
n>m > ng

F(c) = d(xy,x,). Therefore there exists sequences {m;} and {n;} in N such that for all
positive integers k, ny > my > k and

d(l‘n(k)?xm(k)) t ¢(C) and d(xn(k),la xm(k) j ¢(C)
then

$(c) 2 d(@ngy Tmgy) 2 1A @ngy s Tngy 1) + ATy s Tmiy)
that is
(b(C) j d(xn(kwxm(k)) j [d<xn(k)7xn(k)—1) + ¢(C>]
letting k — oo we have
limk—)ood(l’nac) ’ $m(k)) = Qb(C) (9)

again

d(‘rn(k)"rm(k)) j [d<xn(k) ’ I"(k)+1) + d(xn(k)+l’xm(k)+1) + d(xm(k)-s-v Im(k))]
and

d('xn(k)Jrl’ xm(k)Jrl) j [d(xn(k)+l ) m”(k)) + d(xn(k) ) xm(k)) + d(mm(k) ’ ij(k)“)]

letting k£ — oo in above inequalities , we have

Again
d<$n<k) ’ xm(k)+1) = [d(xn(k) ) xm(k)) + d(xm(k) ) xm(k)Jrl)]
and
@y 15 Tmgy ) 2 En s Tngy) + A@ngys T 0) + ATy s T, )]
Further,
d(xn(k)JA’ $m(k)) = [d(mn(k)+17 xn(k)) + d('rn(k) ) xm(k))]
and

ATy s Ty ) 2 (@ngys Ty n) + ATy s T, )]

Letting £k — oo in the above four inequalities we have

limkﬁood(xn(m,xm(km) = ¢(c) (11)
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limk%ood(xn(kprlaxm(k)) = gb(C) (12)
Using (8), (9), (11), and (12) we have

UM soo M (T, s Ty, ) = LM so0@1d(Tn s Timgy,) + 2ld(Tny s Ty ) + A gy s Ty ,,)] +
as [d<xn(k) ) xm(k)+1) + d<xm(k) ) xn(k)+1)]

= (a1 + 2a2)¢(c) (13)

Clearly z,,, = x,,.Putting v = Trgy Y = Tmg,

F(d(@n 0 Tmyin)) = F(A(T 0 Ty, ) 2 F(M (@0 Ty ) = (@i Tmg)

Letting k — oo in the above inequality using (9), (10) and(13) and the continuities of F' and
¢ we have

F(¢(c)) =X F((ar1 + 2a2)¢(c)) — ¢(¢(c))

that is

F(¢(c)) <X F(¢p(c)) — ¢(o(c)) ,(since (a3 + 2as) < 1) and F' is strongly monotonic increasing
.Which a contradiction by virtue of a proprety of ¢. Hence {z,}is a Cauchy sequence .From
the completness of X, there exists z € X such that x, — z as n — co. Since T is continous

and Tx, — Tz as n — oo that is lim, 2,11 = Tz, that is z = T2. Hence z is a fixed point

of T. O

Example 3.8. Let X =[0,1] and A = C with a norm || z ||=| z | be a C*— algebra.
We define C* = {z = (z,y) € C;x = Re(z) > 0,y = Im(z) > 0} .
The partial order < with respect to the C*— algebra C is the partial order in C, z; < zj if
Re(z1) < Re(z) and Im(z1) < Im(z9) for any two elements 21, z5 in C.
Let d: X x X —»C
Suppose that d(z,y) = (|z —y ||z —y|) for z,y € X .
Then ,(X,C,d) is a C*— algebra valued metric space with the required propreties of theorem
3.8.
Let F,¢ : C* — C* such that they can defined as follows:
for t = (x,y) € CT,
(x,y) ifr <1 andy <1

2 ) 1Ly<1
(x,y*)ifr <landy>1
(22, 9?) ifr > landy > 1
and for s = (s1,s9) € Ct with v = min{sy, s},
v? v?
Uit <1
Qﬁ =
11
(57 5) va > 1
Then F' and ¢ have the propreties mentioned in definitions 2.8 and 2.9.
1
Let T : X — X be defined as follows : T'(z) =
L ‘f1 <r<l1
16 725"=
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Then ,T" has the required properties montioned in theorem 3.8.

1
Let a; = 5,&2 = 3 and as = 3 It can be verified that

F(d(Tz, Ty)) = F(M(z,y)) — ¢(d(z,y)) for all z,y € X withy <z

the conditions of theorem 3.8 are satisfied .Here it is seen that 0 is a fixed point of T'.

Theorem 3.9. Let (X, A, d) be a complete C*-algebra valued metric space. Let T : X — X be
a (¢, F)— Kannan-type C*— valued contraction. Then T' has a unique fixed point.

Proof. Since T is a (¢, F')— Kannan-type C*— valued contraction, then exist F' and ¢ such

T T
that F(d(Te. Ty) + o(d(z.g) = FCETDEDTI o piaye ). where M(x.y) =
1
ard(x,y) + ao[d(Tx,y) + d(Ty, x)] + ag[d(Tz, z) + d(Ty,y)] with a; = 0,a2 = 0 and az = §.AS
in the proof of theorem 3.7 T" has a fixed point.

O

Theorem 3.10. Let (X, A, d) be a complete C*-algebra valued metric space. Let T : X — X
be a (¢, F)— Reich-type C*— valued contraction. Then T has a unique fized point.

1 1
Proof. By taking a; = g,ag = (0 and a3 = - we have
d(z,y) + d(z, T'z) + d(y, Ty)
F(d(Tz,Ty) + ¢(d(z,y)) 2 F(M(z,y)) = F( 3 )-
As in the proof of Theorem 3.7 T has a fixed point. 0
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