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FIXED POINT THEOREMS IN A (αA, ηA)-C∗-ALGEBRA VALUED
b−QUASI-METRIC SPACES

ABDELKARIM KARI1 AND MOHAMED ROSSAFI2,∗

Abstract. In the present work, for a unital C∗-algebra A, we introduce the notion of (αA, ηA)-
C∗-algebra valued b-quasi-metric spaces. Also, we discuss the existence and uniqueness of fixed
points for a self-mapping defined on a such space. Our results extend and supplement several
recent results in the literature. Some non-trivial examples are given to illustrate our results.

1. Introduction

It is well known that Banach contraction principle [2] played a central role in fixed point
theory because of its application in many branches of mathematics and it has many applications.
Various generalizations of it appeared in the literature [4–7,10].

In 1930, Wilson [12] introduced the concept of quasi-metric spaces. Using this idea many
researcher presented generalization of the renowned Banach fixed point theorem in the quasi-
metric spaces.

The concept of b-metric spaces was initiated by Bakhtin [1] and Czerwik [3] where the tri-
angle inequality of a metric spaces was replaced by another inequality, the so-called b-triangle
inequality.

In [11], Shah and Hussain established the concept of b-quasi-metric space which generalizes
the concept of quasi-metric space.

In 2014, Ma et al. [8] introduced the notion of C∗-algebra valued metric spaces by replacing
the range set R with an unital C∗-algebra, which is more general class than the class of metric
spaces.

This paper is aimed to generalization of some results on fixed point in a quasi-metric spaces
and C∗-algebra valued b-quasi-metric spaces.

Throughout this paper, we use the concept of (α, η)-triangular-admissible of mappings defined
on C∗-algebra valued b-quasi-metric space and we defined the generalized contractive on such
spaces. Finally, some examples are provided to illustrate the results.

The following lemma will used to proof our main results.

Lemma 1.1. [9] Suppose that A is a unital C∗-algebra with a unit I.
1Laboratory of Algebra, Analysis and Applications Faculty of Sciences Ben M’Sik, Hassan

II University, B.P. 7955 Casablanca, Morocco
2LaSMA Laboratory Department of Mathematics Faculty of Sciences, Dhar El Mahraz Uni-

versity Sidi Mohamed Ben Abdellah, B. P. 1796 Fes Atlas, Morocco
∗Corresponding author
E-mail addresses: abdkrimkariprofes@gmail.com, rossafimohamed@gmail.com.
Key words and phrases. fixed point; b−quasi-metric spaces; C∗−algebra.
Received 26/08/2021.

1

https://doi.org/10.28919/ejma.2021.1.9
http://ejma.euap.org


Eur. J. Math. Appl. | https://doi.org/10.28919/ejma.2021.1.9 2

(1) For any x ∈ A+ we have x � I, k ⇔ ‖x‖ ≤ 1;
(2) If a ∈ A+ with ‖x‖ < 1

2
, then a is invertible and ‖a(I − 1)−1‖ < 1.

(3) Suppose that a, b ∈ A with a, b � 0A and ab = ba, then ab � 0A;
(4) Let a ∈ A′, if b, c ∈ A with b � b � 0A, and (I − a) ∈ A′+ is an invertible operator, then

(I − 1)−1b � (I − 1)−1c.

2. Main result

We now introduce the definition of a C∗-algebra-valued b-quasi-metric spaces.

Definition 2.1. Let X be a non empty set and s � IA. Suppose the mapping d : X×X → A+

satisfies:

(i) d(x, y) = 0A if and only if x = y ; and 0A � d(x, y) for all x, y ∈ X;
(ii) d(x, y) � s [d(x, z) + d(z, y)] for all x, y, z ∈ X, where 0A is zero-element in A and IA is

the unit element in A.
Then (X,A+, d) is called a C∗-algebra valued b-quasi-metric space.

Remark 2.2. The C∗-algebra-valued b-quasi-metric space generalise the C∗-algebra-valued b-
metric space, C∗-algebra-valued quasi-metric space.

The following example illustrates that, in general, a C∗-algebra-valued b-quasi-metric space
is not necessarily a C∗-algebra-valued metric space and is not necessarily a C∗-algebra-valued
b−metric space.

Example 2.3. Let X be a Banach lattice, d : X ×X → A+ given by{
d (x, y) = ‖x− y‖p.a if x ≥ y

d (x, y) = ‖y − x‖p.a if y > x.

for all x, y ∈ X, a ∈ A+, a � 0 and p > 1. Its easy to verify that is a C∗-algebra valued
b-quasi-metric space.

Using the inequality (a+ b)p ≤ 2p(ap + bp) for all a, b � 0, p > 1, we have{
‖x− y‖p ≤ 2p(‖x− z‖p + ‖z − y‖p) if x ≥ y

‖y − x‖p ≤ 2p(‖y − z‖p + ‖z − x‖p) if y > x.

for x, y, z ∈ X, which implies that

d(x, y) ≤ 2p(d(x− z) + d(z − y)).

Example 2.4. Let X = R and A =M2(R) of all 2× 2 matrices with the usual addition, scalar

multiplication and multiplication. Define partial ordering on A as

(
a1 a2
a3 a4

)
�

(
b1 b2
b3 b4

)
⇔ ai ≥ bi for i = 1, 2, 3, 4

For any A ∈ A we define its norm as ,‖A‖ = max1≤i≤4|ai|
Define d : X ×X → A by

d (x, y) =

(
(x− y)p 0

0 0

)
if x ≥ y

d (x, y) =

(
0 0

0 (x− y)p

)
if y > x.
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for all x, y ∈ X and p ≥ 1 is odd number.
It’s clear that 0A � d(x, y) for all x, y ∈ X and d(x, y) = 0A ⇔ x = y.

We will verify b-triangular inequality. Let x, y et z ∈ R then we have six cases.
Case 1: x ≥ y

d (x, y) =

(
(x− y)p 0

0 0

)

(a) if y ≥ z

2p [d(x, z) + d(z, y)] =

(
2p [(x− z)p] 0

0 0

)
+

(
0 0

0 2p [(y − z)p]

)

=

(
2p [(x− z)p] 0

0 2p [(y − z)p]

)

≥

(
(x− y)p 0

0 0

)
= d(x, y).

(b) if x ≥ z ≥ y

2p [d(x, z) + d(z, y)] =

(
2p [(x− z)p] 0

0 0

)
+

(
2p [(z − y)p] 0

0 0

)

=

(
2p [(x− z)p + (z − y)p] 0

0 0

)

�

(
(x− y)p 0

0 0

)
= d(x, y).

(c) if z ≥ x

2p [d(x, z) + d(z, y)] =

(
0 0

0 2p [(z − x)p]

)
+

(
2p [(z − y)p] 0

0 0

)

=

(
2p [(z − y)p] 0

0 2p [(z − y)p]

)

�

(
(x− y)p 0

0 0

)
= d(x, y).

Case 2: x ≤ y

d (x, y) =

(
0 0

0 (y − x)p

)
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(a) if x ≤ y ≤ z

2p [d(x, z) + d(z, y)] =

(
0 0

0 2p [(z − x)p]

)
+

(
2p [(z − y)p] 0

0 0

)

=

(
2p [(z − y)p] 0

0 2p [(z − x)p]

)

�

(
0 0

0 (y − x)p

)
= d(x, y).

(b) if x ≤ z ≤ y

2p [d(x, z) + d(z, y)] =

(
0 0

0 2p [(z − x)p]

)
+

(
0 0

0 2p [(y − z)p]

)

=

(
0 0

0 2p [(z − x)p + (y − z)p]

)

�

(
0 0

0 (y − x)p

)
= d(x, y).

(c) if z ≤ x ≤ y

2p [d(x, z) + d(z, y)] =

(
2p [(x− z)p] 0

0 0

)
+

(
0 0

0 2p [(y − z)p]

)

=

(
2p [(x− z)p] 0

0 2p [(y − z)p]

)

�

(
0 0

0 (y − x)p

)
= d(x, y).

Then (X,A, d) is a C∗-algebra valued b-quasi-metric space. However we have the following:

1) (X,A, d) is not a C∗-algebra valued metric space, as d (1, 0) 6= d (0, 1).
2) (X,A, d) is not a C∗-algebra valued quasi-metric space, as

d (2, 0) =

(
2p 0

0 0

)
�

(
1 0

0 0

)
=

(
1 0

0 0

)
= d (2, 1) + d (1, 0).

Definition 2.5. Let (X,A, d) is a C∗-algebra valued b -quasi-metric space and {xn}n∈N be a
sequence in X. Then

(i) We say that {xn}n∈N forward converges to x with respect to A if and only if for given
ε � 0A, there is N such that for all n ≥ N , d (x, xn) � ε. We denote it by

lim
n→+∞

d (x, xn) = 0A.

https://doi.org/10.28919/ejma.2021.1.9


Eur. J. Math. Appl. | https://doi.org/10.28919/ejma.2021.1.9 5

(ii) We say that {xn}n∈N backward converges to x with respect to A if and only if for given
ε � 0A, there is N such that for all n ≥ N , d (xn, x) � ε. We denote it by

lim
n→+∞

d (xn, x) = 0A.

(iii) We say that {xn}n∈N converges to x with respect to A if and only if {xn}n∈N forward
converges and backward converges to x.

Definition 2.6. Let (X,A, d) is a C∗-algebra valued b -quasi-metric space and {xn}n∈N be a
sequence in X. Then

(i) We say that {xn}n∈N forward Cauchy if

lim
n,m→+∞

d (xn, xm) = 0A.

(ii) We say that {xn}n∈N backward Cauchy if

lim
n,m→+∞

d (xm, xn) = 0A.

Example 2.7. Let X = R+ and A =M2(R) of all 2×2 matrices with the usual addition, scalar

multiplication and multiplication. Define partial ordering on A as

(
a1 a2
a3 a4

)
�

(
b1 b2
b3 b4

)
⇔ ai ≥ bi for i = 1, 2, 3, 4

For any A ∈ A we define its norm as ,‖A‖ = max1≤i≤4|ai|
Define d : X ×X → A by

d (x, y) =

(
(x− y)2 0

0 0

)
if x ≥ y

d (x− y) =

(
1 0

0 1

)
if y > x.

Then x,A, d is an (X,A, d) a C∗-algebra valued b-quasi-metric space.
Let xn = x+ 1

n+1
. Then 

d (xn, x) =

(
(xn − x)2 0

0 (xn − x)2

)

=

( (
1

n+1

)2
0

0
(

1
n+1

)2
)

d (x, xn) =

(
1 0

0 1

)
Then lim

n→+∞
d (xn, x) = 0A and lim

n→+∞
d (x, xn) = 1A. Therefore the existence forward converges

does not imply the existence backward converges.

Lemma 2.8. Let (X,A, d) a C∗-algebra valued b-quasi-metric space and {xn}n in X. If {xn}n
forward converges to x ∈ X and backward converges to y ∈ X, then x = y.

Proof. Let ε � 0A. Since {xn}nforward converges to x so there exists n1 ∈ N such that
d(xn, x) � ε

2s
for all n ≥ n0. Also {xn}n forward converges to y so there exists n1 ∈ N such

https://doi.org/10.28919/ejma.2021.1.9
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that d(y, xn) � ε
2s

for all n ≥ n1. Then for all N ≥ max{n0, n1, },

d(x, y) � s [d(x, xn) + d(xn, y)] � s
[ ε
2s

+
ε

2s

]
= ε.

As ε � 0A was arbitrary, we deduce that d(x, y) = 0A, which implies x = y. �

Definition 2.9. Let (X,A, d) a C∗-algebra valued b-quasi-metric space. X is said to be for-
ward (backward) complete if every forward (backward) Cauchy sequence {xn}n in X forward
(backward) converges to x ∈ X.

Definition 2.10. Let (X,A, d) a C∗-algebra valued b-quasi-metric space. X is said to be
complete if X is forward and backward complete.

Definition 2.11. Let (X,A, d) a C∗-algebra valued b-quasi-metric space and αA, ηA : X×X →
A′+ be two functions and T : X → X.We say that T is a triangular (αA, ηA)-admissible mapping
if

(T1) αA (x, y) � IA ⇒ αA (Tx, Ty) � IA, x, y ∈ X;
(T2) ηA (x, y) � IA ⇒ ηA (Tx, Ty) � IA, x, y ∈ X;

(T3)

{
αA (x, y) � IA
α (y, z) � IA

⇒ α (x, z) � IA for all x, y, z ∈ X;

(T4)

{
ηA (x, y) ≤ 1

ηA (y, z) � IA
⇒ ηA (x, z) � IA for all x, y, z ∈ X.

Definition 2.12. Let (X,A, d) a C∗-algebra valued b-quasi-metric space and αA, ηA : X×X →
A′+ be two functions. T : X → X.

(a) T is αA-continuous mapping on (X,A, d), if for given point x ∈ X and sequence {xn}
in X, xn → x and αA (xn, xn+1) � IA for all n ∈ N, imply that Txn → Tx.

(b) T is ηA sub−continuous mapping on (X, d) , if for given point x ∈ X and
sequence {xn} in X, xn → x and ηA (xn, xn+1) � IA for all n ∈ N, imply that Txn → Tx.

(c) T is (αA, ηA) −continuous mapping on (X, d) , if for given point x ∈ X and sequence
{xn} in X, xn → x and αA (xn, xn+1) � IA or ηA (xn, xn+1) � IA for all n ∈ N, imply
that Txn → Tx.

Definition 2.13. Let (X,A, d) a C∗-algebra valued b-quasi-metric space and αA, ηA : X×X →
A′+ be two functions. The space X is said to be:

(a) αA−complete, if every Cauchy sequence {xn} in X with αA (xn, xn+1) � IA for all n ∈ N,
converges in X.

(b) ηA−complete, if every Cauchy sequence {xn} in X with ηA (xn, xn+1) � IA for all n ∈ N,
converges in X.

(c) (αA, ηA)−complete, if every Cauchy sequence {xn} in X with αA (xn, xn+1) � IA or
ηA (xn, xn+1) � IA for all n ∈ N, converges in X.

Definition 2.14. Let (X,A, d) a C∗-algebra valued b-quasi-metric space and αA, ηA : X×X →
A′+ be two functions. The space X is said to be:

(a) αA-regular, if xn → x, where αA (xn, xn+1) � IA for all n ∈ N, implies αA (xn, x) � IA

for all n ∈ N.

https://doi.org/10.28919/ejma.2021.1.9
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(b) (X, d) is ηA−sub-regular, if xn → x, where ηA (xn, xn+1) � IA for all n ∈ N, implies
ηA (xn, x) � IA for all n ∈ N.

(c) (X, d) is (αA, ηA)-regular, if xn → x, where αA (xn, xn+1) � IA or η (xn, xn+1) � IA for
all n ∈ N, imply that αA (xn, x) � IA or ηA (xn, x) � IA for all n ∈ N.

Definition 2.15. Let (X,A, d) a C∗-algebra valued b-quasi-metric space. A mapping T : X →
X is a C∗-valued contractive mapping on X, if there exists an a ∈ A with ‖ A ‖< 1 such that

(2.1) d(Tx, Ty) � a∗d(x, y)a

for all x, y ∈ A.

Theorem 2.16. Let (X,A, d) a C∗-algebra valued b-quasi-metric space (αA, ηA)-complete, with
s � IA, s ∈ A′ ,‖s‖‖a‖2 < 1 suppose that T : X → X, be a contractive mapping satisfies the
following conditions:

(i) T is triangular (αA, ηA)-admissible.
(ii) There exists x0 ∈ X such that αA(x0, Tx0) � IA or ηA(x0, Tx0) � IA .
(iii) T is (αA, ηA)-continuous.

Then T has a fixed point. Moreover, T has a unique fixed point when αA (z, u) � IA or
ηA (z, u) � IA for all z, u ∈ Fix(T ).

Proof. Let x0 ∈ X such that αA (x0, Tx0) � IA or ηA (x0, Tx0) � IA. We define the sequence
{xn} in X by xn = Txn+1, for all n ∈ N.

Since T is an triangular (αA, ηA)-admissible mapping, then

αA (x0, x1) = αA (x0, Tx0) � IA ⇒ αA (Tx0, Tx1) = αA (x1, x2) � IA

or
ηA (x0, x1) = ηA (x0, Tx0) � IA ⇒ ηA (Tx0, Tx1) = ηA (x1, x2) � IA

Continuing this process we have
αA (xn−1, xn) � IA

or
ηA (xn−1, xn) � IA,

for all n ∈ N. By (T3) and (T4) , one has.

(2.2) αA (xm, xn) � IA or ηA (xm, xn) � IA, ∀m,n ∈ N, m 6= n.

Suppose that there exists n0 ∈ N such that xn0 = Txn0 . Then xn0 is a fixed point of T and the
prove is finished. Hence, we assume that xn 6= Txn, i.e. d (xn−1, xn) > 0 for all n ∈ N.

Step 1: Applying inequality 2.1 with x = xn−1 and y = xn, we obtain

d (xn, xn+1) = d (Txn−1, Txn)

� a∗d (xn−1, xn) a

� (a∗)2d (xn−2, xn−1) a
2

� ...

� (a∗)nd (x0, x1) a
n.

https://doi.org/10.28919/ejma.2021.1.9
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Notice that in C∗-algebra, if a, b ∈ A+ and 0A � a � b, then for any x ∈ A both x∗ax and x∗bx
are positive elements and

0A � x∗ax � x∗bx.

By property (ii) of the C∗-algebra valued b-quasi-metric space, we have

d (xn, xn+m) � s [d (xn, xn+1) + d (xn+1, xn+m)]

� sd (xn, xn+1) + s2d (xn+1, xn+2)

+ ...

+ sm−1d (xn+m−2, xn+m−1) + sm−1d (xn+m−1, xn+m)

� s(a∗)nd (x0, x1) a
n + s2(a∗)n+1d (x0, x1) a

n+1

+ ...+ sm−1(a∗)n+m−2d (x0, x1) a
n+m−2 + sm−1(a∗)n+m−1d (x0, x1) a

n+m−1

=
i=m−1∑
i=1

sk(a∗)n+k−1d (x0, x1) a
n+k−1 + sm−1(a∗)n+m−1d (x0, x1) a

n+m−1

=
i=n+k−1∑

i=n

(s
k
2 an+k−1d (x0, x1)

1
2 )∗s

k
2 d (x0, x1)

1
2 an+k−1

+ s
m−1

2 (a∗)n+m−1d (x0, x1)
1
2 s

m−1
2 an+m−1d (x0, x1)

1
2

=
i=n+k−1∑

i=n

(s
k
2 an+k−1d (x0, x1)

1
2 )∗s

k
2 d (x0, x1)

1
2 an+k−1

+ (s
m−1

2 (a)n+m−1d (x0, x1)
1
2 )∗s

m−1
2 an+m−1d (x0, x1)

1
2

=
i=n+k−1∑

i=n

|s
k
2 d (x0, x1)

1
2 an+k−1|2 + |s

m−1
2 an+m−1d (x0, x1)

1
2 |2

�
i=n+k−1∑

i=n

‖s
k
2 d (x0, x1)

1
2 an+k−1‖2.IA + ‖s

m−1
2 an+m−1d (x0, x1)

1
2 ‖2.IA

� ‖d (x0, x1)
1
2 ‖2

i=n+k−1∑
i=n

‖s
k
2 an+k−1‖2.IA + ‖s

m−1
2 an+m−1d (x0, x1)

1
2 ‖2.IA

= ‖d (x0, x1) ‖
i=n+k−1∑

i=n

‖sk‖‖a2(n+k−1)‖.IA + ‖d (x0, x1) ‖‖s‖m−1‖a‖2(n+m−1).IA

� ‖d (x0, x1) ‖
[
‖s‖‖a‖2n

](1− (‖s‖‖a2‖)m−1

1− ‖s‖a‖2‖

)
.IA

+ ‖d (x0, x1) ‖‖s‖m−1‖a‖2(n+m−1).IA → 0A(n→∞)

with the condition ‖s‖a‖2 < 1 and at n→∞. Therefore xn is a forward Cauchy sequence with
respect to A. By the completeness of (X,A, d) there exists an z ∈ X such that

https://doi.org/10.28919/ejma.2021.1.9
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Step 2: Substituting x = xn and y = xn−1 , from (2.1), for all n ∈ N, we have

d (xn+1, xn) = d (Txn, Txn−1)

� a∗d (xn, xn−1) a

� (a∗)2d (xn−1, xn−2) a
2

� ...

� (a∗)nd (x1, x0) a
n.

By property (ii) of the C∗-algebra valued b-quasi-metric space, we have

d (xn+m, xn) � s [d (xn+m, xn+m−1) + d (xn+m−2, xn)]

� sd (xn+m, xn+m−1) + s2d (xn+m−1, xn+m−2)

+ ...

+ sm−1d (xn+2, xn+1) + sm−1d (xn+1, xn)

� s(a∗)nd (x1, x0) a
n + s2(a∗)n+1d (x1, x0) a

n+1

+ ...+ sm−1(a∗)n+m−2d (x1, x0) a
n+m−2 + sm−1(a∗)n+m−1d (x1, x0) a

n+m−1

=
i=m−1∑
i=1

sk(a∗)n+k−1d (x1, x0) a
n+k−1 + sm−1(a∗)n+m−1d (x1, x0) a

n+m−1

� ‖d (x1, x0) ‖
[
‖s‖‖a‖2n

](1− (‖s‖‖a2‖)m−1

1− ‖s‖a‖2‖

)
.IA

+ ‖d (x1, x0) ‖‖s‖m−1‖a‖2(n+m−1).IA → 0A(n→∞)

Therefore xn is a backward Cauchy sequence with respect to A. By the completeness of (X,A, d)
there exists an u ∈ X such that

lim
n→∞

d(u, xn) = 0A.

So, from Lemma 2.8, we get z = u.
On has Since T is (αA, ηA) −continuous, we have

lim
n→∞

d(Txn, T z) = 0A

and

lim
n→∞

d(Tz, Txn) = 0A.

Then d(Tz, z) = 0A or d(z, Tz) = 0A. Thus z = Tz is a fixed point for T .
Uniqueness: Suppose that u 6= z is another fixed point of T . Since

0A � d (z, u) = d (Tz, Tu) � a∗d(z, u)a

� ‖a∗d(z, u)a‖

� ‖a∗‖‖d(z, u)‖‖a‖

= ‖a‖2‖d(z, u)‖

< ‖d(z, u)‖, which is a contradiction.

Hence d (z, u) = 0A and z = u, which implies that the fixed point is unique. �
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Now, we replace the assumption of (αA, ηA)continuoity of T in the above theorem by another
condition.

Theorem 2.17. Let (X,A, d) a C∗-algebra valued b-quasi-metric space (αA, ηA complete, with
b � IA, b ∈ A′ ,‖s‖‖a‖2 < 1 suppose that T : X → X, be a contractive mapping satisfies the
following conditions:

(i) T is triangular (αA, ηA)-admissible.
(ii) There exists x0 ∈ X such that αA(x0, Tx0 � IA or ηA(x0, Tx0 � IA .
(iii) (X, d) is a (αA, ηA)-C∗-algebra valued b-quasi-metric space.

Then T has a fixed point. Moreover, T has a unique fixed point when αA (z, u) �A I or
ηA (z, u) � IA for all z, u ∈ Fix(T ).

Proof. Similar to the proof of Theorem 2.16, we can conclude that

(αA (xn, xn+1) � IA or ηA (xn, xn+1) � IA) , and xn → z as n→∞,

Since (X, ,A, d) is (αA, ηA)-regular, then αA (xn, x) � IA or ηA (xn, x) � IA for all n ∈ N. We
can apply (2.1), to xn and z for all n > n0 to get

0A � d(z, Tz) � s [d (z, Txn) + d(Txn, T z)]

� s [(d(z, Tz) + a∗d(xn, z)a]→ s (d(z, Tz) (as n→∞).

It is a contradiction. Hence d(z, Tz) = 0.

New, Applying inequality (2.1) with x = z and y = xn, we obtain

0A � d(Tz, z) � s [d (Tz, Txn) + d(Txn, z)]

� s [a∗d(z, xn)a+ d(Txn, z)]→ s (d(z, Tz) (as n→∞).

It is a contradiction. Hence d(Tz, z) = 0. Thus z = Tz is a fixed point for T .
The proof of the uniqueness is similarly to that of Theorem 2.16. �

Example 2.18. Let X = [1,+∞[, A = M2(R) of all 2 × 2 matrices with the usual addition
,scalar multiplication and multiplication.

Define partial ordering on A as

(
a1 a2

a3 a4

)
�

(
b1 b2

b3 b4

)
⇔ ai ≥ bi for i = 1, 2, 3, 4. For

any A ∈ A we define its norm as, ‖

(
a1 a2

a3 a4

)
‖ =

[
i=4∑
i=1

|ai|2
] 1

2

.

We define d : X ×X → [0,+∞[ as
d (x, y) =

(
(x− y)3 0

0 (x− y)3

)
if x � y

d (x, y) =

(
(y − x)3 0

0 (y − x)3

)
if x ≺ y

Then (X,A+, d) is a C∗-algebra valued rectangular quasi-metric space. Define mapping T :

X → X by

T (x) =
√
x

https://doi.org/10.28919/ejma.2021.1.9
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and

αA (x, y) =

(
x+y

max{x,y}+1
0

0 x+y
max{x,y}+1

)
.

ηA (x, y) =

(
|x−y|

max{x,y}+1
0

0 |x−y|
max{x,y}+1

)
.

Evidently, T (x) ∈ X and Then, T is an ((αA, ηA)−continuous triangular (α, η)−admissible
mapping.

Consider the following possibilities:
case 1 : x � y . Then

T (x) =
√
x, T (y) =

√
x, d (Tx, Ty) =

(
(
√
x−√y)3 0

0 (
√
x−√y)3

)
.

On the other hand

d (x, y) =

(
(x− y)3 0

0 (x− y)3

)
.

it follows that

(2.3) d(Tx, Ty) � a∗d(x, y)a.

Indeed

d(Tx, Ty) =

(
(
√
x−√y)3 0

0 (
√
x−√y)3

)

�

(
1√
8

0

0 1√
8

)(
(x− y)3 0

0 (x− y)3

)(
1√
8

0

0 1√
8

)
= a∗d(x, y)a.

where

a =

(
1√
8

0

0 1√
8

)
with verify

‖a‖ =
√
2√
8
=

1

4
< 1.

case 2 : x ≺ y. Then

T (x) =
√
x, T (y) =

√
x, d (Tx, Ty) =

(
(
√
y −
√
x)3 0

0 (
√
y −
√
x)3

)
.

On the other hand

d (x, y) =

(
(y − x)3 0

0 (y − x)3

)
.

it follows that

(2.4) d(Tx, Ty) � a∗d(x, y)a.

https://doi.org/10.28919/ejma.2021.1.9
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Indeed

d(Tx, Ty) =

(
(
√
y −
√
x)3 0

0 (
√
y −
√
x)3

)

�

(
1√
8

0

0 1√
8

)(
(y − x)3 0

0 (y − x)3

)(
1√
8

0

0 1√
8

)
= a∗d(x, y)a.

where

a =

(
1√
8

0

0 1√
8

)
with verify

‖a‖ =
√
2√
8
=

1

4
< 1.

Hence, the condition (2.1) is satisfied. Therefore, T has a unique fixed point z = 1.
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