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ON f-KENMOTSU 3-MANIFOLDS ADMITTING W2-CURVATURE TENSOR

SUNIL KUMAR YADAV

Abstract. In this study, we make the contribution of some results on 3-dimensional f -
Kenmotsu manifolds under some certain conditions admitting on W2-curvature tensor. We
have also established an example of 3-dimensional f -Kenmotsu manifold.

1. Introduction

Let Mn be an almost contact manifold with an almost contact metric structure (φ, ξ, η, g)

[1]. We denote by K, the fundamental 2-form of Mn, i.e., K(X, Y )=g(X,φY ) for any vector
fields X.Y ∈ χ(Mn), where χ(Mn) being the Lie algebra of differentiable vector fields on Mn.
Furthermore, we recollect the following definitions [1, 6, 17].
The manifold Mn and its structure (φ, ξ, η, g) is said to be
i) normal if the almost complex structure defined on the product manifoldMn×< is integrable
(equivalently,[φ, φ]+2dη ⊗ ξ = 0),
ii) almost cosymplectic if dη=0 and dφ=0,
iii) cosymplectic if it is normal and almost cosymplectic (equivalently, ∇φ=0, where ∇ is
covariant differentiation with respect to the Levi-Civita connection). The manifold Mn is
called locally conformal almost cosymplectic (respectively, locally conformal cosymplectic) if
Mn has an open covering (Vt) endowed with differentiable functions δt : Vi → R such that over
each (Vt) the almost contact metric structure (φt, ξt, ηt, gt) defined by

φt = φ, ξt = eδtξ, ηt = e−δtη, gt = e−2δtg

is almost cosymplectic (respectively, locally conformal cosymplectic). Normal locally conformal
almost cosymplectic manifold were studied by Olszak and Rosca [12]. An almost contact metric
manifold is said to be f -Kenmotsu if it is normal and locally conformal almost cosymplectic.
Such type of manifold was also studied by several authors [2, 7, 8, 13, 19–23]. Olszak and
Rosca [12] also gave a geometric interpretation of f -Kenmotsu manifolds and studied some
curvature restrictions. Among others, they proved that a Ricci symmetric f -Kenmotsu manifold
is an Einstein manifold.

Pokhariyal and Mishra [15] have introduced new tensor fields known as W2 and E-tensor
fields, in Riemannian manifold and studied its properties. After that Pokhariyal [14] has studied
some certain properties of this tensor field in a Sasakian manifold. Moreover Matsumoto et.
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al. [?] have studied P -Sasakian manifolds with W2 and E-tensor fields. After that De and
Sarkar [3] have studied P -Sasakian manifolds equipped with W2-tensor field. The curvature
tensor W2 is defined by

(1.1) W2(X, Y, Z, U) = R(X, Y, Z, U) +
1

n− 1
[g(X,Z)S(Y, U)− g(Y, Z)S(X,U)],

where S is a Ricci tensor of type (0, 2).
The outline of this paper is to study, some certain curvature conditions on 3-dimensional f -
Kenmotsu manifolds. First we examine its geometric and relativistic properties in 3-dimensional
f -Kenmotsu manifolds satisfying W2 = 0 and W2-semi-symmetric. Also we characterize such
manifolds which satisfies some certain conditions, that is, P ·W2=0, T ·W2=0, C ·W2=0 and
H ·W2=0 where P is the projective curvature tensor, T is the concircular curvature tensor, C
is the conformal curvature tensor and H is the quasi- conformal curvature tensor.

2. f-Kenmotsu manifolds (M2n+1, φ, ξ, η, g)

An odd dimensional smooth manifold M2n+1 is said to be an almost contact metric manifold
if there exist a (1, 1) tensor field φ, a vector field ξ, a 1-form η and a Riemannian metric g on
M2n+1 such that

(2.1) φ2 = −I + η ⊗ ξ, η(ξ) = 1, η(X) = g(X, ξ), φξ = 0, η ◦ φ = 0,

(2.2) g(φX, φY ) = g(X, Y )− η(X)η(Y ),

for any vector fields X, Y ∈ χ(M2n+1). Such a manifold of dimension (2n + 1) is denoted by
M2n+1(φ, ξ, η, g) and it is known as f -Kenmotsu manifold if the covariant differentiation of φ
satisfies [9, 12].

(2.3) (∇Xφ)Y = f{g(φX, Y )ξ − η(Y )φX},

where f ∈ C∞(M) such that df ∧ η=0. If f=α(6= 0) is constant then the manifold is a
α-Kenmotsu manifold [9]. Kenmotsu manifold is an example of f -Kenmotsu manifold with
f=1 [10,16]. If f=0, then the manifold is cosymplectic [9]. An f -Kenmotsu manifold is said to
be regular if f 2 + f

′ 6= 0, where f ′=ξf . For an f -Kenmotsu manifold it follows from (2.3) that

(2.4) ∇Xξ = f{X − η(X) ξ}.

The condition df ∧ η=0 holds if dim. M ≥ 5, in general and does not hold if dim. M=3 [16].
In a 3-dimensional Riemannian manifold, we have

R(X, Y )Z = g(Y, Z)QX − g(X,Z)QY + S(Y, Z)X(2.5)

− S(X,Z)Y − r

2
{g(Y, Z)X − g(X,Z)Y }.

In a 3-dimensional f -Kenmotsu manifold we have [12]:

R(X, Y )Z =
(r

2
+ 2f 2 + 2f

′
)

(X ∧ Y )Z(2.6)

−
(r

2
+ 3f 2 + 3f

′
)
{η(X)(ξ ∧ Y )Z + η(Y )(X ∧ ξ)Z}

(2.7) S(X, Y ) =
(r

2
+ f 2 + f

′
)
g(X, Y )−

(r
2

+ 3f 2 + 3f
′
)
η(X)η(Y ),
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(2.8) QX =
(r

2
+ f 2 + f

′
)
X −

(r
2

+ 3f 2 + 3f
′
)
η(X)ξ,

where r is the scalar curvature. From (2.6) and (2.7) we obtain

(2.9) R(X, Y )ξ = −
(
f 2 + f

′
)

[η(Y )X − η(X)Y ] ,

(2.10) R(ξ, Y )Z = −
(
f 2 + f

′
)

[g(Y, Z)ξ − η(X)Y ] ,

(2.11) S(X, ξ) = −2
(
f 2 + f

′
)
η(X),

(2.12) S(ξ, ξ) = −2
(
f 2 + f

′
)
,

(2.13) Qξ = −2
(
f 2 + f

′
)
ξ.

As a consequence of (2.4) we also have

(2.14) (∇Xη)(Y ) = fg(φX, φY ).

Also from (2.10) it follows that

(2.15) S(φX, φY ) = S(X, Y ) + 2
(
f 2 + f

′
)
η(X)η(Y )

for all vector fields X, Y .
The notion of a quasi-conformal curvature tensor H was given by Yano and Sawaki [18] and is
defined by

(2.16)
H(X, Y )Z = αR(X, Y )Z + β[S(Y, Z)X − S(X,Z)Y + g(Y, Z)QX

−g(X,Z)QY ]− r
n

(
α
n−1 + 2β

)
{g(Y, Z)X − g(X,Z)Y } ,

where α and β are constant and R, S,Q and r are the Riemannian curvature tensor of type
(1, 3), the Ricci tensor of type (0, 2), the Ricci operator defined by g(QX, Y )=S(X, Y ).

If α=1 and β=- 1
n−2 then it reduces to conformal curvature tensor [5] which is defined by

(2.17)
H(X, Y )Z = R(X, Y )Z

− 1
n−2 [S(Y, Z)X − S(X,Z)Y + g(Y, Z)QX − g(X,Z)QY ]

+ r
(n−1)(n−2) [g(Y, Z)X − g(X,Z)Y ] = C(X, Y )Z

We define endomorphism R(X, Y ) and X ∧A Y of ℵ(M) by

(2.18) R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z,

(2.19) (X ∧A Y )Z = A(Y, Z)X − A(X,Z)Y,
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respectively, where X, Y, Z ∈ ℵ(M) and A is the symmetric (0, 2)-tensor. Beside this, the
projective curvature tensor P and the concircular curvature tensor T in a Riemannian manifold
(Mn, g) are defined by

(2.20) P (X, Y )Z = R(X, Y )Z − 1

n− 1
(X ∧S Y )Z,

(2.21) T (X, Y )Z = R(X, Y )Z − r

n(n− 1)
(X ∧g Y )Z,

respectively.
A regular f - manifold (M,φ, ξ, η, g) is said to be an Einstein manifold if its Ricci tensor S
satisfies

(2.22) S(X, Y ) = c1g(X, Y ),

for any vector fields X, Y and c1 is a certain scalar.
A Riemannian or a semi-Riemannian manifold is said to semisymmetric if R(X, Y )·R=0, where
R(X, Y ) is considered as a derivation of the tensor algebra at each point of the manifold for
the tangent vectors X, Y . Using (2.8), (2.9) and (2.12), the equation (2.17),(2.21) and (2.22),
it follows that

(2.23) P (ξ,X, Y ) = −(f 2 + f
′
)g(X, Y )ξ − 1

2
S(X, Y )ξ,

(2.24) T (ξ,X, Y ) =
{

(f 2 + f
′
) +

r

6

}
(g(X, Y )ξ − η(Y )X) ,

(2.25)
C(ξ,X, Y ) =

{
−(f 2 + f

′
) + r

2

}
(g(X, Y )ξ − η(Y )X)

−S(X, Y )ξ + 2(f 2 + f
′
) (g(X, Y )ξ + 2η(Y )X) ,

(2.26) H(ξ,X, Y ) = λ1 {g(X, Y )ξ − η(Y )X}+ bS(X, Y )ξ + λ2 {g(X, Y )ξ − 2η(Y )X} ,

respectively, where λ1 = −
{
a(f 2 + f

′
) + r

3

(
2b+ a

2

)}
, λ2 = −2b(f 2 + f

′
).

Proposition 2.1. In a 3-dimensional f -Kenmotsu manifold (M3, φ, ξ, η, g, ) the W2-curvature
tensor satisfies the condition

(2.27) W2(X, Y, Z, ξ) = 0.

3. W2-Flat f-Kenmotsu manifold(M2n+1, φ, ξ, η, g)

In this section, we study the geometric and relativistic properties of f -Kenmotsu manifold
admitting vanishing W2-curvature. Let (M3, φ, ξ, η, g) be a f -Kenmostu manifold satisfying
W2=0. Then from (1.1), it follows

(3.1) R(X, Y, Z, U) =
1

2
[g(Y, Z)S(X,U)− g(X,Z)S(Y, U)].

Putting X=Z=ξ in (3.1), using (2.1),(2.9)and (2.11), we get

(3.2) S(Y, U) = 2(f 2 + f
′
)g(Y, U).

Thus M3 is an Einstein manifold. Thus we have the following result.

https://doi.org/10.28919/ejma.2021.1.8
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Theorem 3.1. Let (M3, φ, ξ, η, g) be a 3-dimensional f -Kenmotsu manifold satisfying W2=0.
Then M3 is an Einstein manifold.

Also from (3.1) and (3.2), we have

(3.3) R(X, Y, Z, U) = (f 2 + f
′
) {g(X,Z)g(Y, U)− g(Y, Z)g(X,U)} .

If f=α=constant 6= 0. It follows that M3 is of constant curvature (−α2).Thus we state the
following result.

Corollary 3.2. A W2-flat 3-dimensional α-Kenmotsu manifold (M3, φ, ξ, η, g) is locally iso-
metric to the hyperbolic space H3(−α2).

Also if f=1. This implies that the manifold is Kenmotsu manifold.

Corollary 3.3. A W2-flat 3-dimensional Kenmotsu manifold (M3, φ, ξ, η, g) is locally isometric
to the hyperbolic space H3(−1).

Corollary 3.4. A W2-flat 3-dimensional cosymplectic manifold (M3, φ, ξ, η, g) is an Euclidean
space.

4. W2-semisymmetric f-Kenmotsu manifold

This section is affectionate to the study of f -Kenmotsu manifold with W2-semisymmetric.
On that account, we can proof some certain the result.
A 3-dimensional f -Kenmotsu manifold is said to be W2-semisymmetric if it satisfies the condi-
tion

(4.1) R(X, Y ) ·W2 = 0,

where R(X, Y ) is considered as a derivation of the tensor algebra at each point of the manifold
for the tangent vectors X, Y .
From (4.1), it follows that

(4.2)
R(X, Y )W2(Z,U)V −W2(R(X, Y )Z,U)V

−W2(Z,R(X, Y )U)V −W2(Z,U)R(X, Y )V = 0.

Which implies

(4.3)
g(R(X, Y )W2(Z,U)V, ξ)− g(W2(R(X, Y )Z,U)V, ξ)

−g(W2(Z,R(X, Y )U)V, ξ)− g(W2(Z,U)R(X, Y )V, ξ) = 0.

Taking X=ξ in (4.2), it yield

(4.4)
g(R(ξ, Y )W2(Z,U)V, ξ)− g(W2(R(ξ, Y )Z,U)V, ξ)

−g(W2(Z,R(ξ, Y )U)V, ξ)− g(W2(Z,U)R(ξ, Y )V, ξ) = 0.

With the help of (2.1) and (2.9), equation (4.4) take the form

(4.5)

−(f 2 + f
′
) {g(Y,W2(Z,U)V )ξ − η(W2(Z,U)V )η(Y )}

+(f 2 + f
′
) {g(Y, Z)η(W2(ξ, U)V )− η(Z)η(W2(Y, U)V )}

+(f 2 + f
′
) {g(Y, U)η(W2(Z, ξ)V )− η(U)η(W2(Z, Y )V )}

+(f 2 + f
′
) {g(Y, V )η(W2(Z, ξ)U)− η(V )η(W2(Z,U)V )} = 0.

Taking the inner product of (4.5) with ξ and using (2.27), we get

(4.6) −(f 2 + f
′
)W2(Z,U, V, Y ) = 0.

https://doi.org/10.28919/ejma.2021.1.8
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This implies

(4.7) W2(Z,U, V, Y ) = 0.

Therefore M2n+1 is W2-flat. So according to Theorem 3.1, we can state the following result.

Theorem 4.1. If a 3-dimensional regular f -Kenmotsu manifold (M3, φ, ξ, η) isW2-semisymmetric.
Then it is an Einstein manifold.

Corollary 4.2. AW2-semisymmetric 3-dimensional regular f -Kenmotsu manifold (M3, φ, ξ, η, g)

is W2-flat.

Corollary 4.3. A W2-semisymmetric 3-dimensional α-Kenmotsu manifold (M3, φ, ξ, η, g) is
locally isometric to the hyperbolic space H3(−α2).

Corollary 4.4. A W2-semisymmetric 3-dimensional Kenmotsu manifold (M3, φ, ξ, η, g) is lo-
cally isometric to the hyperbolic space H3(−1).

Corollary 4.5. A W2-semisymmetric 3-dimensional cosymplectic manifold (M3, φ, ξ, η, g) is
an Euclidean space.

5. f-Kenmotsu manifold (M2n+1, φ, ξ, η, g) satisfying P (X, Y ) ·W2 = 0

This section concern with the study of f -Kenmotsu manifold bearing the condition

(5.1) P (X, Y ) ·W2 = 0.

This implies

(5.2)
P (X, Y )W2(Z,U)V −W2(P (X, Y )Z,U)V

−W2(Z, P (X, Y )U)V −W2(Z,U)P (X, Y )V = 0.

Substituting X=ξ in (5.2), we have

(5.3)
P (ξ, Y )W2(Z,U)V −W2(P (ξ, Y )Z,U)V

−W2(Z, P (ξ, Y )U)V −W2(Z,U)P (ξ, Y )V = 0.

In view of (2.23) and (5.3), it takes the form

(5.4)

−2(f 2 + f
′
) {g(Y,W2(Z,U)V )ξ − g(Y, Z)η(W2(ξ, U)V )

−g(Y, U)η(W2(Z, ξ)V )− g(Y, U)η(W2(Z,U)ξ)

−S(Y,W2(Z,U)V )ξ + S(Y, Z)η(W2(ξ, U)V )

+S(Y, U)η(W2(Z, ξ)V ) + S(Y, V )η(W2(Z,U)ξ) = 0.

Taking the inner product of (5.4) with ξ and using (2.27), we get

(5.5) −2(f 2 + f
′
)g(Y,W2(Z,U)V ) + S(Y,W2(Z,U)V ) = 0.

With the help of (1.1), equation (5.5)) reduces to

(5.6)
2(f 2 + f

′
)
{
R(Z,U, V, Y ) = 1

2
(g(Z, V )S(U, Y )− g(U, V )S(Z, Y ))

}
+1

2
R(Z,U, V,QY )+1

4
{g(Z, V )S(QY,U)− g(U, V )S(Z,QY )} = 0,

where S(QY,Z)=S2(Y, Z).
Putting Z=V=ξ in (5.6), using (2.1), (2.10)and (2.11), we obtain

(5.7) S2(Y, U) = −4(f 2 + f
′
)S(Y, U)− 4(f 2 + f

′
)2g(Y, U).

So, we can state the following result.

https://doi.org/10.28919/ejma.2021.1.8


Eur. J. Math. Appl. | https://doi.org/10.28919/ejma.2021.1.8 7

Theorem 5.1. If in a 3-dimensional regular f -Kenmotsu manifold satisfies the condition
P (X, Y ) ·W2=0. Then the equation(5.7) is holds on M3.

Again, we consider the Lemma that was proved by Deszcz et al. as follows

Lemma 5.2. [4] Let A be a symmetric (0, 2)-tensor at point x of a semi-Riemannian manifold
(Mn, g), n > 1, and let T=g∧A be the Kulkarni-Nomizu product of g and A. Then the relation

(5.8) T · T = αQ(g, T ), α ∈ <

is satisfied at x if and only if the condition

(5.9) A2 = Aα + λg, λ ∈ <

holds at x.

With the help of Theorem 5.1 and Lemma 5.2 we have the following result.

Corollary 5.3. Let M be an 3-dimensional α-Kenmostu manifold satisfying the condition
P (X, Y ) ·W2 = 0. Then T · T=αQ(g, T ), where T=g ∧ S and α=-4α2.

Corollary 5.4. LetM be an 3-dimensional Kenmostu manifold satisfying the condition P (X, Y )·
W2 = 0. Then T · T=αQ(g, T ), where T=g ∧ S and α=-4.

6. f-Kenmotsu manifold (M2n+1, φ, ξ, η, g) satisfying T (X, Y ) ·W2=0

This segment is affectionate to the study of f -Kenmotsu manifold satisfying the condition
T (X, Y ) ·W2=0 and deduce some certain result.
Let (M3, φ, ξ, η, g) be a f -Kenmotsu manifold satisfying the condition

(6.1) T (X, Y ) ·W2 = 0.

This implies

(6.2)
T (X, Y )W2(Z,U)V −W2(T (X, Y )Z,U)V

−W2(Z, T (X, Y )U)V −W2(Z,U)T (X, Y )V = 0.

Let X = ξ. Then (6.2) implies

(6.3)
T (ξ, Y )W2(Z,U)V −W2(T (ξ, Y )Z,U)V

−W2(Z, T (ξ, Y )U)V −W2(Z,U)T (ξ, Y )V = 0.

Using (2.24) in (6.3), we have

(6.4)

−
{

(f 2 + f
′
) + r

6

}
{g(Y,W2(Z,U)V )ξ − g(Y, Z)W2(ξ, U)V

−g(Y, U)W2(Z, ξ)V − g(Y, V )W2(Z,U)ξ.

+
{

(f 2 + f
′
) + r

6

}
{η(W2(Z,U)V )Y − η(Z)W2(Y, U)V

−η(U)W2(Z, Y )V − η(V )W2(Z,U)Y = 0.

Taking the inner product of (6.4)) with ξ together with (2.27), we obtain

(6.5)
{

(f 2 + f
′
) +

r

6

}
W2(Z,U, V, Y ) = 0.

It is obvious from (6.5) that either r = −6(f 2 + f
′
) or

(6.6) W2(Z,U, V, Y ) = 0.

https://doi.org/10.28919/ejma.2021.1.8
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It means the manifold isW2-flat. Thus with the help of Theorem 3.1, Theorem 4.1 and Corollary
3.2 we state the following result.

Theorem 6.1. If a 3-dimensional regular f -Kenmotsu manifold (M3, φ, ξ, η) satisfying the
condition T (X, Y ) ·W2=0. Then either r=-6(f 2 + f

′
) or it is an Einstein manifold.

Corollary 6.2. If a 3-dimensional regular f -Kenmotsu manifold (M3, φ, ξ, η) satisfying the
condition T (X, Y ) ·W2=0 is W2-flat provided r 6= −6(f 2 + f

′
).

Corollary 6.3. A 3-dimensional α-Kenmotsu manifold (M3, φ, ξ, η, g) bearing the condition
T (X, Y ) ·W2=0.Then it is an Einstein manifold. Moreover it is locally isometric to the hyper-
bolic space H3(−α2).

Corollary 6.4. A 3-dimensional Kenmotsu manifold (M3, φ, ξ, η, g) with the condition T (X, Y )·
W2=0 is it is locally isometric to the hyperbolic space H3(−1)

Corollary 6.5. A 3-dimensional cosymplectic manifold (M3, φ, ξ, η, g) satisfying the condition
T (X, Y ) ·W2=0 is an Euclidean space.

7. f-Kenmotsu manifold (M2n+1, φ, ξ, η, g) satisfying C(X, Y ) ·W2=0

In this constituent, we study f -Kenmotsu manifold with C(X, Y ) ·W2=0, and deduce some
certain result.
Let (M3, φ, ξ, η, g, ) be a f -Kenmotsu manifold satisfying the condition

(7.1) C(X, Y ) ·W2 = 0

This equation implies

(7.2)
C(X, Y )W2(Z,U)V −W2(C(X, Y )Z,U)V

−W2(Z,C(X, Y )U)V −W2(Z,U)C(X, Y )V = 0.

Putting X=ξ in (7.2), we obtain

(7.3)
C(ξ, Y )W2(Z,U)V −W2(C(ξ, Y )Z,U)V

−W2(Z,C(ξ, Y )U)V −W2(Z,U)C(ξ, Y )V = 0.

In view of (2.25) and (7.3) we have

k1[g(Y,W2(Z,U)V )ξ − g(Y, Z)W2(ξ, U)V − g(Y, U)W2(Z, ξ, V )

−g(Y, V )W2(Z,U)ξ] + k2[g(Y,W2(Z,U)V )ξ − 2η(Z)W2(Z,U)V )Y

−g(Y, Z)W2(ξ, U, V ) + 2η(Z)W2(Y, U)V

−g(Y, U)W2(Z, ξ)V − 2η(U)W2(Z, Y )V − S(Y, (W2(Z,U)V )ξ

−S(Y, Z)W2(ξ, U)V − S(Y, U)W2(Z, ξ, V )− S(Y, V )W2(Z,U, ξ)],

where k1 =
{
−(f 2 + f

′
) + r

2

}
, k2 = 2(f 2 + f

′
).

Taking the inner product of above equation with ξ and using (2.27), it yield

(7.4)
{
−(f 2 + f

′
) +

r

2

}
W2(Z,U, V, Y ) = 0.

It is obvious from (7.5) either r=2(f 2 + f
′
) or

(7.5) W2(Z,U, V, Y ) = 0.

https://doi.org/10.28919/ejma.2021.1.8
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It means the manifold isW2-flat. Thus with the help of Theorem 3.1, Theorem 4.1 and Corollary
3.2, we state the following result.

Theorem 7.1. If a 3-dimensional regular f -Kenmotsu manifold (M3, φ, ξ, η) satisfying the
condition C(X, Y ) ·W2=0. Then either r=2(f 2 + f

′
) or it is an Einstein manifold.

Corollary 7.2. If a 3-dimensional regular f -Kenmotsu manifold (M3, φ, ξ, η) satisfying the
condition C(X, Y ) ·W2=0 is W2-flat provided r 6= 2(f 2 + f

′
).

Corollary 7.3. A 3-dimensional α-Kenmotsu manifold (M3, φ, ξ, η, g) bearing the condition
C(X, Y ) ·W2=0.Then it is an Einstein manifold. Moreover it is locally isometric to the hyper-
bolic space H3(−α2).

Corollary 7.4. A 3-dimensional Kenmotsu manifold (M3, φ, ξ, η, g) with the condition C(X, Y )·
W2=0 is it is locally isometric to the hyperbolic space H3(−1).

Corollary 7.5. A 3-dimensional cosymplectic manifold (M3, φ, ξ, η, g) satisfying the condition
C(X, Y ) ·W2=0 is an Euclidean space.

8. f-Kenmotsu manifold (M2n+1, φ, ξ, η, g) satisfying H(X, Y ) ·W2=0

In this Section, we study f -Kenmotsu manifold with H(X, Y ) · W2=0, and deduce some
result.
Let (M3, φ, ξ, η, g) be a f -Kenmootsu manifold satisfying the condition

(8.1) H(X, Y ) ·W2 = 0.

Above equation takes the form

(8.2)
H(X, Y )W2(Z,U)V −W2(H(X, Y )Z,U)V

−W2(Z,H(X, Y )U)V −W2(Z,U)H(X, Y )V = 0.

Putting X=ξ in (8.2), we obtain

(8.3)
H(ξ, Y )W2(Z,U)V −W2(H(ξ, Y )Z,U)V

−W2(Z,H(ξ, Y )U)V −W2(Z,U)H(ξ, Y )V = 0.

Using (2.26) in (8.3), and taking associate with ξ together with (2.27), we get

(8.4) λ1g(Y,W2(Z,U)V ) + bS(Y,W2(Z,U)V ) = 0.

Again putting Z=V=ξ in (8.4), using (1.1) and (2.9), we obtain

(8.5) bS(QU, Y ) +
{
λ1 + 2b(f 2 + f

′
)
}
S(Y, U) + λ3η(Y )η(U) + 2λ1(f

2 + f
′
)g(Y, U) = 0.

where λ3=
{

4b(f 2 + f
′
)2 − 4b(f 2 + f

′
)
}
.

If b=0, then (8.5), we get

(8.6) λ1

{
S(Y, U) + 2(f 2 + f

′
)g(Y, U)

}
= 0.

This implies either λ1=0 or S(Y, U)=-2(f 2 + f
′
)g(Y, U), respectively.

Again, if b 6= 0, then (8.5)) we have

(8.7)
S(QU, Y ) +

{
λ1
b

+ 2(f 2 + f
′
)
}
S(Y, U) + λ3

b
η(Y )η(U)

+2λ1
b

(f 2 + f
′
)g(Y, U) = 0.

So it leads to the following result.
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Theorem 8.1. If a 3-dimensional regular f -Kenmotsu manifold satisfying the condition H(X, Y )·
W2=0. Then
(i) if b=0, then either λ1=0 on M , or it is an Einstein manifold.
(ii) if b 6= 0, then equation (8.7) holds on M .

Corollary 8.2. LetM be a 3-dimensional Kenmotsu manifold satisfying the condition H(X, Y )·
W2=0. Then T · T=αQ(g, T ), where T=g ∧ S and α=-

{
2 + λ1

b

}
.

9. Example

9.1. When f is a constant function. Let M3={(u, v, w) ∈ R3 : u, v, z(6= 0) ∈ R} be a
Riemannian manifold, where(u, v, w) denotes the standard coordunates of a point in R3. Let
us suppose that

e1 = w
∂

∂u
, e2 = w

∂

∂v
, e3 = −w ∂

∂w
be linearly independent vector fields at each point of M3 and therefore it form a basis for
the tangent space T (M3). We also define the Riemannian metric g of the manifold M3 as
g(ei, ej) = δij, where δij denotes the Kronecker delta and i, j = 1, 2, 3, and given by

g =
1

w2
[du⊗ du+ dv ⊗ dv + dw ⊗ dw] .

Let η be the 1-form have the significance

η(U) = g(U, e3)

for any U ∈ Γ(TM) and φ be the (1, 1)-tensor field defined by

φe1 = −e2, φe2 = −e1, φe3 = 0.

By the linearity properties of φ and g we can easily verify the following relations

η(e3) = 1, φ2(U) = −U + η(U)e3

g(φU, φV ) = g(U, V )− η(U)η(V ),

for arbitrary vector fields U,W ∈ T (M3). This shows that ξ=e3 and the structure (φ, ξ, η, g)

defines an almost contact metric structure on M3. If ∇ be the Levi-Civita connection with
respect to the Riemannian metric g, then with the help of above, we can easily calculate that

[e1, e2] = 0, [e1, e3] = e1, [e2, e3] = e2.

Now we recall the Koszul’s formula as

2g(∇UV,W ) = U(g(V,W )) + V (g(W,X))−W (g(U, V ))

− g(U, [V,W ])− g(V, [U,W ]) + g(W, [U, V ])

for arbitrary vector fields U, V,W ∈ T (M3). Making use Koszul’s formula we get the following:

∇e2e3 = e2, ∇e2e2 = −e3, ∇e2e1 = 0,

∇e3e3 = 0, ∇e3e2 = 0, ∇e3e1 = 0,

∇e1e3 = e1, ∇e1e2 = 0, ∇e1e1 = −e3.

From the above calculation it is clear that M3 satisfies the condition ∇Uξ=f{U − η(U)ξ}
for e3=ξ, where f=1=α = constant( 6= 0). Thus we conclude that M3 leads to f -Kenmotsu
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(Kenmotsu ) manifold. Also f 2 + f
′ 6= 0. That implies M3 is a 3-dimensional regular f -

Kenmotsu manifold.

9.2. When f is a smooth function. We consider the 3-dimensional manifoldM={(u, v, w) ∈
R3, w 6= 0}, where (u, v, w) are the standard coordinate in R3. Let (e1, e3, e3) be linearly
independent vector fields at each point of M , given by

e1 =
1

w

∂

∂u
, e2 =

1

w

∂

∂v
, e3 = − ∂

∂w
.

Let g be the Riemannian metric such that

g(e1, e2) = g(e2, e3) = g(e1, e3) = 0, g(e1, e1) = g(e2, e2) = g(e3, e3) = 1.

and given by

g = w2

[
du⊗ du+ dv ⊗ dv +

1

w2
dw ⊗ dw

]
.

Let η be the 1-form have the significance

η(U) = g(U, e3)

for any U ∈ Γ(TM) and φ be the (1, 1)-tensor field defined by

φe1 = −e2, φe2 = e1, φe3 = 0.

Making use of the linearity of φ and g we have

η(e3) = 1, φ2(U) = −U + η(U)e3

g(φU, φV ) = g(U, V )− η(U)η(V ),

for any U,W ∈ Γ(TM). Now we can easily calculate

[e1, e2] = 0, [e1, e3] = − 1

w
e2, [e2, e3] = − 1

w
e1.

Making use Koszul’s formula we get the following:

∇e2e3 = − 1

w
e2, ∇e2e2 =

1

w
e3, ∇e2e1 = 0,

∇e3e3 = 0, ∇e3e2 = 0, ∇e3e1 = 0,

∇e1e3 = − 1

w
e1, ∇e1e2 = 0, ∇e1e1 =

1

w
e3.

Consequently it is clear that M satisfies the condition ∇Uξ=f{U − η(U)ξ} for e3=ξ, where
f=- 1

w
. Thus we conclude that M leads to f -Kenmotsu manifold. Also f 2 + f

′= 2
w2 6= 0. That

implies M is a 3-dimensional regular f -Kenmotsu manifold.
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