A NOTE ON THE NUMBER OF CYCLIC SUBGROUPS OF p-GROUPS

KAIRAN YANG AND RULIN SHEN*

Abstract

Let G be a finite group and $c(G)$ the number of its cyclic subgroups. In this paper we prove that if $|G|=p^{n}$ then $c(G) \equiv n+1(\bmod \mathrm{p}-1)$.

Given a finite p-group G, write $c(G)$ to denote the number of cyclic subgroups of G, counting the trivial subgroup.

Theorem Suppose $|G|=p^{n}$. Then $c(G) \equiv n+1(\bmod \mathrm{p}-1)$.
Lemma Let $G=Z \times C$, where $|Z|=p$, and C is a nontrivial cyclic p-group. Then the number of complements for Z in G is exactly p.

Proof. Write $p^{r}=|C|$, so $r>0$. If $r=1$, then G is elementary of order p^{2}, and the assertion is clear, so assume that $r>1$. Every complement for Z in G is isomorphic to C, and hence is cyclic of order p^{r}. Conversely, we claim that every cyclic subgroup X of G of order p^{r} is a complement for Z. To see this, it suffices to show that $Z \nsubseteq X$. Otherwise, we have $Z<X$, and since X is cyclic, it follows that the elements of Z are p th powers in X. This is a contradiction, however, because all p th powers in G lie in C but $Z \nsubseteq C$.

Now the elements of G that have order less than p^{r} are exactly the elements of $Z \times B$, where B is the subgroup of C having order p^{r-1}. Thus exactly p^{r} elements of G have order less than p^{r}, and hence the number of elements of G that have order p^{r} is $p^{r+1}-p^{r}$. Each of these elements generates one of the complements X for Z in G, and each such complement is generated by any one of $\varphi\left(p^{r}\right)$ different elements of order p^{r}. The number of complements, therefore, is exactly $\frac{(p-1) p^{r}}{\varphi\left(p^{r}\right)}=p$, as required.

Proof of Theorem. The result is trivial if $n=0$, so we assume that $n>0$, and we proceed by induction on n. Let $Z \triangleleft G$, with $|Z|=p$, and observe that each cyclic subgroup of G / Z is either of the form U / Z, where U is a cyclic subgroup of G containing Z, or else it is of the form $(V \times Z) / Z$, where V is a nonidentity cyclic subgroup of G not containing Z.

Write u to denote the number of cyclic subgroups U of G that contain Z, and write v to denote the number of nonidentity cyclic subgroups of G that do not contain Z. Then $c(G)=u+v+1$, where the " +1 " appears in order to account for the trivial subgroup of G. Now each cyclic subgroup C of G / Z is either of the form $C=U / Z$, where U is one of u different subgroups

[^0]E-mail addresses: 1179392382@qq.com, rshen@hbmy.edu.cn.
Key words and phrases. number of cyclic subgroups; 2-groups; involutions.
Project supported by the NSF of China (Grant No. 12161035).
Received 20/08/2021.
U / Z, or else by the lemma, there are exactly p different subgroups V such that $C=(V \times Z) / Z$.
Since $v=c(G)-u-1$, we have

$$
c(G / Z)=u+\frac{v}{p}=u+\frac{c(G)-u-1}{p},
$$

and thus

$$
\begin{aligned}
c(G)= & p(c(G / Z)-u)+u+1 \\
& \equiv c(G / Z)+1 \\
\equiv & (n-1)+1+1 \\
= & n+1(\bmod \mathrm{p}-1),
\end{aligned}
$$

where the second congruence holds by the inductive hypothesis.
Next we will give some corollaries. Recalled that a 2-group of maximal class is a dihedral group $D_{2^{n}}(n \geq 3)$, a semidihedral group $S D_{2^{n}}(n \geq 4)$ or a generalized quaternion group $Q_{2^{n}}(n \geq 3)$ (see Theorem 4.5, [1]). By applying the Inclusion-Exclusion Principle, the number of cyclic subgroups of each of the above 2-groups was determined in [2]. To summarize, we have $c\left(D_{2^{n}}\right)=2^{n-1}+n, c\left(S D_{2^{n}}\right)=3 \cdot 2^{n-3}+n$ and $c\left(Q_{2^{n}}\right)=2^{n-2}+n$.

Corollary 1 Suppose that a p-group G of order p^{n} is neither cyclic nor a 2-group of maximal class. Then
(1) $c(G) \equiv p n-p+2(\bmod p(p-1))$, and
(2) $\frac{c(G)-(n+1)}{p-1} \equiv n-1(\bmod p)$.

Proof. Write $c_{p^{i}}(G)$ the number of cyclic subgroups of order p^{i} in G, and next assume that G is neither cyclic nor a 2 -group of maximal class. If $i=1$, then $c_{p}(G) \equiv 1(\bmod p)$. If $i \geq 2$, then $c_{p^{i}}(G)$ is a multiple of p (see Lemma 5.15, [3]). It follows that

$$
\begin{gathered}
c(G)=1+c_{p}(G)+\sum_{i \geq 2} c_{p^{i}}(G) \\
\equiv 1+c_{p}(G) \\
\equiv 2(\bmod p) .
\end{gathered}
$$

Now our main theorem gives another equation $c(G) \equiv n+1(\bmod p-1)$. By applying the Chinese Remainder Theorem, we have $c(G) \equiv p(n-1)+2(\bmod p(p-1))$, the item (1) is proved.

Next for the item (2) we assume that $c(G)=n+1+(p-1) m$, where m is an integer. Then $(p-1) m \equiv c_{p}-n(\bmod p)$, and so $(p-1) m \equiv 1-n(\bmod p)$. Since $p-1$ is coprime to p, by the Fermat's Little Theorem it follows that $(p-1)^{p-1} \equiv 1(\bmod p)$, and then

$$
\begin{aligned}
m & \equiv(p-1)^{p-2}(1-n) \\
& \equiv(-1)^{p-2}(1-n) \\
& \equiv n-1(\bmod p),
\end{aligned}
$$

as required.

References

[1] D. Gorenstein, Finite groups, Chelsea Publishing Company, New York, 1980.
[2] M. Tărnǎuceanu, L. Tóth, Cyclicity degrees of finite groups, Acta Math. Hungar. 145 (2015) 489-504. https://doi.org/10.1007/s10474-015-0480-2.
[3] Berkovich, Y., Y. Berkovich, Z. Janko, Groups of prime power order (Vol. 1), Walter de Gruyter GmbH \& Co., Berlin, 2008.

[^0]: Department of Mathematics, Hubei Minzu University, Enshi 445000, Hubei, P.R. China
 *Corresponding author

