A NOTE ON THE NUMBER OF CYCLIC SUBGROUPS OF *p*-GROUPS

KAIRAN YANG AND RULIN SHEN*

ABSTRACT. Let G be a finite group and c(G) the number of its cyclic subgroups. In this paper we prove that if $|G| = p^n$ then $c(G) \equiv n + 1 \pmod{p-1}$.

Given a finite p-group G, write c(G) to denote the number of cyclic subgroups of G, counting the trivial subgroup.

Theorem Suppose $|G| = p^n$. Then $c(G) \equiv n + 1 \pmod{p-1}$.

Lemma Let $G = Z \times C$, where |Z| = p, and C is a nontrivial cyclic p-group. Then the number of complements for Z in G is exactly p.

Proof. Write $p^r = |C|$, so r > 0. If r = 1, then G is elementary of order p^2 , and the assertion is clear, so assume that r > 1. Every complement for Z in G is isomorphic to C, and hence is cyclic of order p^r . Conversely, we claim that every cyclic subgroup X of G of order p^r is a complement for Z. To see this, it suffices to show that $Z \nsubseteq X$. Otherwise, we have Z < X, and since X is cyclic, it follows that the elements of Z are p th powers in X. This is a contradiction, however, because all p th powers in G lie in C but $Z \nsubseteq C$.

Now the elements of G that have order less than p^r are exactly the elements of $Z \times B$, where B is the subgroup of C having order p^{r-1} . Thus exactly p^r elements of G have order less than p^r , and hence the number of elements of G that have order p^r is $p^{r+1} - p^r$. Each of these elements generates one of the complements X for Z in G, and each such complement is generated by any one of $\varphi(p^r)$ different elements of order p^r . The number of complements, therefore, is exactly $\frac{(p-1)p^r}{\varphi(p^r)} = p$, as required.

Proof of Theorem. The result is trivial if n = 0, so we assume that n > 0, and we proceed by induction on n. Let $Z \triangleleft G$, with |Z| = p, and observe that each cyclic subgroup of G/Z is either of the form U/Z, where U is a cyclic subgroup of G containing Z, or else it is of the form $(V \times Z)/Z$, where V is a nonidentity cyclic subgroup of G not containing Z.

Write u to denote the number of cyclic subgroups U of G that contain Z, and write v to denote the number of nonidentity cyclic subgroups of G that do not contain Z. Then c(G) = u + v + 1, where the "+1" appears in order to account for the trivial subgroup of G. Now each cyclic subgroup C of G/Z is either of the form C = U/Z, where U is one of u different subgroups

DEPARTMENT OF MATHEMATICS, HUBEI MINZU UNIVERSITY, ENSHI 445000, HUBEI, P.R. CHINA

^{*}Corresponding author

E-mail addresses: 1179392382@qq.com, rshen@hbmy.edu.cn.

Key words and phrases. number of cyclic subgroups; 2-groups; involutions.

Project supported by the NSF of China (Grant No. 12161035).

Received 20/08/2021.

U/Z, or else by the lemma, there are exactly p different subgroups V such that $C = (V \times Z)/Z$. Since v = c(G) - u - 1, we have

$$c(G/Z) = u + \frac{v}{p} = u + \frac{c(G) - u - 1}{p},$$

and thus

$$c(G) = p(c(G/Z) - u) + u + 1$$
$$\equiv c(G/Z) + 1$$
$$\equiv (n - 1) + 1 + 1$$
$$= n + 1 \pmod{p - 1},$$

where the second congruence holds by the inductive hypothesis.

Next we will give some corollaries. Recalled that a 2-group of maximal class is a dihedral group D_{2^n} $(n \ge 3)$, a semidihedral group $SD_{2^n}(n \ge 4)$ or a generalized quaternion group $Q_{2^n}(n \ge 3)$ (see Theorem 4.5, [1]). By applying the Inclusion-Exclusion Principle, the number of cyclic subgroups of each of the above 2-groups was determined in [2]. To summarize, we have $c(D_{2^n}) = 2^{n-1} + n, c(SD_{2^n}) = 3 \cdot 2^{n-3} + n$ and $c(Q_{2^n}) = 2^{n-2} + n$.

Corollary 1 Suppose that a p-group G of order p^n is neither cyclic nor a 2-group of maximal class. Then

- (1) $c(G) \equiv pn p + 2(mod \ p(p-1))$, and
- (2) $\frac{c(G)-(n+1)}{n-1} \equiv n-1 \pmod{p}.$

Proof. Write $c_{p^i}(G)$ the number of cyclic subgroups of order p^i in G, and next assume that G is neither cyclic nor a 2-group of maximal class. If i = 1, then $c_p(G) \equiv 1 \pmod{p}$. If $i \geq 2$, then $c_{p^i}(G)$ is a multiple of p (see Lemma 5.15, [3]). It follows that

$$c(G) = 1 + c_p(G) + \sum_{i \ge 2} c_{p^i}(G)$$
$$\equiv 1 + c_p(G)$$
$$\equiv 2 \pmod{p}.$$

Now our main theorem gives another equation $c(G) \equiv n + 1 \pmod{p-1}$. By applying the Chinese Remainder Theorem, we have $c(G) \equiv p(n-1) + 2 \pmod{p(p-1)}$, the item (1) is proved.

Next for the item (2) we assume that c(G) = n + 1 + (p-1)m, where *m* is an integer. Then $(p-1)m \equiv c_p - n \pmod{p}$, and so $(p-1)m \equiv 1 - n \pmod{p}$. Since p-1 is coprime to *p*, by the Fermat's Little Theorem it follows that $(p-1)^{p-1} \equiv 1 \pmod{p}$, and then

$$m \equiv (p-1)^{p-2}(1-n)$$
$$\equiv (-1)^{p-2}(1-n)$$
$$\equiv n-1 (mod \ p),$$

as required.

References

- [1] D. Gorenstein, Finite groups, Chelsea Publishing Company, New York, 1980.
- [2] M. Tărnăuceanu, L. Tóth, Cyclicity degrees of finite groups, Acta Math. Hungar. 145 (2015) 489–504. https://doi.org/10.1007/s10474-015-0480-2.
- [3] Berkovich, Y., Y. Berkovich, Z. Janko, Groups of prime power order (Vol. 1), Walter de Gruyter GmbH & Co., Berlin, 2008.