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A NOTE ON THE NUMBER OF CYCLIC SUBGROUPS OF p-GROUPS

KAIRAN YANG AND RULIN SHEN∗

Abstract. Let G be a finite group and c(G) the number of its cyclic subgroups. In this paper
we prove that if |G| = pn then c(G) ≡ n + 1(mod p-1).

Given a finite p-group G, write c(G) to denote the number of cyclic subgroups of G, counting
the trivial subgroup.

Theorem Suppose |G| =pn. Then c(G) ≡ n+ 1(mod p− 1).

Lemma Let G=Z ×C, where |Z| = p, and C is a nontrivial cyclic p-group. Then the number
of complements for Z in G is exactly p.

Proof. Write pr = |C|, so r > 0. If r = 1, then G is elementary of order p2, and the assertion
is clear, so assume that r > 1. Every complement for Z in G is isomorphic to C, and hence
is cyclic of order pr. Conversely, we claim that every cyclic subgroup X of G of order pr is a
complement for Z. To see this, it suffices to show that Z * X. Otherwise, we have Z < X, and
since X is cyclic, it follows that the elements of Z are p th powers in X. This is a contradiction,
however, because all p th powers in G lie in C but Z * C.

Now the elements of G that have order less than pr are exactly the elements of Z×B, where
B is the subgroup of C having order pr−1. Thus exactly pr elements of G have order less than pr,
and hence the number of elements of G that have order pr is pr+1− pr. Each of these elements
generates one of the complements X for Z in G, and each such complement is generated by any
one of ϕ(pr) different elements of order pr. The number of complements, therefore, is exactly
(p−1)pr

ϕ(pr)
= p, as required. �

Proof of Theorem. The result is trivial if n = 0, so we assume that n > 0, and we proceed
by induction on n. Let Z / G, with |Z| = p, and observe that each cyclic subgroup of G/Z is
either of the form U/Z, where U is a cyclic subgroup of G containing Z, or else it is of the form
(V × Z)/Z, where V is a nonidentity cyclic subgroup of G not containing Z.

Write u to denote the number of cyclic subgroups U ofG that contain Z, and write v to denote
the number of nonidentity cyclic subgroups of G that do not contain Z. Then c(G) = u+v+1,
where the ”+1” appears in order to account for the trivial subgroup of G. Now each cyclic
subgroup C of G/Z is either of the form C = U/Z, where U is one of u different subgroups
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U/Z, or else by the lemma, there are exactly p different subgroups V such that C = (V ×Z)/Z.
Since v = c(G)− u− 1, we have

c(G/Z) = u+
v

p
= u+

c(G)− u− 1

p
,

and thus

c(G) = p(c(G/Z)− u) + u+ 1

≡ c(G/Z) + 1

≡ (n− 1) + 1 + 1

= n+ 1(mod p− 1),

where the second congruence holds by the inductive hypothesis. �

Next we will give some corollaries. Recalled that a 2-group of maximal class is a dihedral
group D2n (n ≥ 3), a semidihedral group SD2n(n ≥ 4) or a generalized quaternion group
Q2n(n ≥ 3) (see Theorem 4.5, [1]). By applying the Inclusion-Exclusion Principle, the number
of cyclic subgroups of each of the above 2-groups was determined in [2]. To summarize, we
have c(D2n) = 2n−1 + n, c(SD2n) = 3 · 2n−3 + n and c(Q2n) = 2n−2 + n.

Corollary 1 Suppose that a p-group G of order pn is neither cyclic nor a 2-group of maximal
class. Then

(1) c(G) ≡ pn− p+ 2(mod p(p− 1)), and
(2) c(G)−(n+1)

p−1
≡ n− 1(mod p).

Proof. Write cpi(G) the number of cyclic subgroups of order pi in G, and next assume that
G is neither cyclic nor a 2-group of maximal class. If i = 1, then cp(G) ≡ 1(mod p). If i ≥ 2,
then cpi(G) is a multiple of p (see Lemma 5.15, [3]). It follows that

c(G) = 1 + cp(G) +
∑
i≥2

cpi(G)

≡ 1 + cp(G)

≡ 2(mod p).

Now our main theorem gives another equation c(G) ≡ n + 1(mod p − 1). By applying the
Chinese Remainder Theorem, we have c(G) ≡ p(n − 1) + 2(mod p(p − 1)), the item (1) is
proved.

Next for the item (2) we assume that c(G) = n+ 1+ (p− 1)m, where m is an integer. Then
(p − 1)m ≡ cp − n(mod p), and so (p − 1)m ≡ 1 − n(mod p). Since p − 1 is coprime to p, by
the Fermat’s Little Theorem it follows that (p− 1)p−1 ≡ 1(mod p), and then

m ≡ (p− 1)p−2(1− n)

≡ (−1)p−2(1− n)

≡ n− 1(mod p),

as required. �
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