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γ-STRONGLY CONVEX FUNCTIONS AND γ-SUBDIFFERENTIABILITY
WITH APPLICATION TO NONLINEAR PARTIAL DIFFERENTIAL

EQUATIONS

IKRAM DAIDAI∗, TIJANI AMAHROQ AND AICHA SYAM

Abstract. This paper introduces a new class of convex functions called γ-strongly convex
functions and studies some properties of it. It also defines a new subdifferentiability called
γ-subdifferentiability and investigate some properties of it. A characterization of lower semi-
continuous γ-strongly convex functions in Banach spaces is shown. Then we remove to present a
result concerning optimization problems for γ-strongly convex functions which allows us to con-
clude an extension of Minty-Browder and nonlinear Lax-Milgram theorems in Banach spaces.
Finally an example of nonlinear partial differential equations is provided.

Introduction.

Let (V, ‖ ‖) be a Banach space and V ∗ its topological dual space and let f : V → R∪{+∞}
be an extended-real-valued function. It is well known that convex functions are the most useful
instruments responsible for the success of analysis. Due to the concept of convexity several
concepts and results have been introduced such as the concept of Fenchel subdifferential which
is expressed at a point x where f is finite as follows

∂f(x) = {x∗ ∈ V ∗, < x∗, y − x >≤ f(y)− f(x), ∀y ∈ V }.

A number of results and rules have been proved. In particular it has been shown that a l.s.c.
function defined on a Banach space is convex iff its Clarke subdifferential is monotone set-
valued map. The first work has been done by A. Poliquin [15] who has worked in the finite
dimensional case and this fact had been remarked by F. Clarke [7] for a locally Lipschitzian
function in Banach space. In [8] R. Correa, A. Jofré and L. Thibault proved the same result
on reflexive Banach space by using Moreau-Yosida proximal approximation. In [9] the result
was extended in Banach space by using the mean value theorem of D. Zagrodny [24] and L.
Thibault [23].
In connection with the concept of convex functions many other types of functions have been
studied as well as the concept of c-convex functions which have been considered by T. Polyak [16]
and the concept of γ-paraconvex functions and maps introduced by S. Rolewicz [20–22] and
studied by A. Jourani [11], A. Allali and T. Amahroq [2], T. Amahroq and A. Taa [3] and other
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authors.

In this paper we introduce a new class of convex functions that will be called γ-strongly
convex functions and give some characterizations of it. A new subdifferential is also presented,
this alows us to give another characterization of such functions in terms of γ-monotonicity of
its presubdifferential. This fact deduces the result obtained by R. Correa, A. Jofré and L.
Thibault [8, 9].

In the last section we establish an important tool to solve unconstrained optimization
problem for γ-strongly convex functions in Banach spaces. This result turns out to be an
extension of Minty-Browder theorem in Banach spaces and hence finds out Lax-Milgram
theorem. Our results are stronger than the classical ones even in the linear case. We end this
paper by applying our results to p-Laplace problem.

Preliminaries.

Throughout this paper V is a Banach space, V ∗ its topological dual and <,> the bilinear
form of duality. We denote by ‖ . ‖ the norm in V , ‖ . ‖∗ the norm in V ∗ and B(x, r) the open
ball centered at x with radius r in V .
In what follows we recall some notions and results from nonsmooth analysis. It is well known
that for any convex function f : V → R ∪ {+∞}, the "right hand" directional derivative at
x in domf (the domain of f ) exists and is for each h ∈ V

d+f(x)(h) = lim
t→0+

f(x+ th)− f(x)

t
.

The function f is said to be Gâteaux-differentiable at x ∈ domf provided the limit

< f ′(x), h >= lim
t→0

f(x+ th)− f(x)

t
,

exists for each h ∈ V . The function f ′(x) is called the Gâteaux-derivative of f at x. Let f :
V → R∪ {+∞} be a function. The Clarke subdifferential of f at a point x ∈ domf is defined
by

∂cf(x) = {x∗ ∈ V ∗, < x∗, h >≤ f o(x;h), ∀h ∈ V }

where

f o(x;h) = lim sup
u→fx
t→0+

inf
y→h

f(u+ ty)− f(u)

t
.

For the definition of lim sup inf and the properties of ∂cf and f o see Rockafellar [18,19]. When
f is convex, then ∂cf(x) coincides with the Fenchel subdifferential (see [7]), that is

∂f(x) = {x∗ ∈ V ∗ : < x∗, y − x >≤ f(y)− f(x), ∀y ∈ V }.

We extend these definitions by setting ∂f(x) = ∂cf(x) = ∅ if x 6∈ domf . Moreover if f is
continuous at a point x ∈ domf then ∂f(x) 6= ∅.
For any ε > 0, the ε-subdifferential of f at a point x ∈ domf is the set defined by

∂εf(x) = {x∗ ∈ V ∗ : < x∗, y − x >≤ f(y)− f(x) + ε, ∀y ∈ V }.
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And ∂εf(x) = ∅ when x 6∈ domf . Clearly ∂ε1f(x) ⊂ ∂ε2f(x) whenever ε1 ≤ ε2. It is well
known [14] that if f is proper, l.s.c. and convex, then for each ε > 0 and x ∈ domf , the set
∂εf(x) is nonempty. Under the same hypotheses we have

d+f(x)(h) = lim
ε→0+

sup{< x∗, h >, x∗ ∈ ∂εf(x)}, ∀h ∈ V.

We also recall that a set-valued map F : V ⇒ V ∗ is monotone iff for all x, y ∈ V , x∗ ∈ F (x)

and y∗ ∈ F (y) we have
< x∗ − y∗, x− y >≥ 0.

And we write domF = {x ∈ V, F (x) 6= ∅} for its domain.

1. The γ-strongly convex functions.

In this section we bring into light a class of functions that are strongly convex that will be
called γ-strongly convex functions.

Definition 1.1. Let f : V → R ∪ {+∞} be a function and γ be a real positive number
(γ > 0). We will say that f is (γ, c)−convex if there exist a constant c ≥ 0 and a function g :
[0, 1]→ R+ with

lim
θ→0

g(θ)

θ
< +∞ and g(0) = g(1) = 0

such that for all x, y ∈ V and θ ∈ [0, 1]

(1.1) f(θy + (1− θ)x) ≤ θf(y) + (1− θ)f(x)− cg(θ) ‖ x− y ‖γ .

If c > 0, the function is said to be γ-strongly convex.
If c = 0, the function is convex.

Remark 1.2. Note that when g(θ) = θ(1−θ)
2

and γ = 2 we obtain the functions called strongly-
convex.

The following proposition is an obvious consequence.

Proposition 1.3. i)If f1 and f2 are respectively (γ, c1)-convex and (γ, c2)-convex, and α1 and
α2 are positive real numbers, then α1f1 + α2f2 is (γ, α1c1 + α2c2)-convex.
ii)If the functions fi, i ∈ {1, ..., n} are respectively (γ, ci)− convex, then the function f = sup

i∈I
fi

is (γ, c)− convex with c = inf
i∈I

ci.

The following proposition shows an equivalent definition of γ-strong convexity when a function
is l.s.c.

Proposition 1.4. Let f : V → R ∪ {+∞} be a l.s.c. function. Then f is γ-strongly convex
with γ > 0 iff there exists c > 0 such that for all x, y ∈ V

(1.2) f(
x+ y

2
) ≤ 1

2
f(x) +

1

2
f(y)− c ‖ x− y ‖γ .

Proof. We easily see that (1.1) implies (1.2), it suffices to set θ = 1
2
in (1.1). Conversely, suppose

that (1.2) holds and fix x, y ∈ V . For n ≥ 1 we show by induction on n the following property

(Pn) f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)− c

2
‖ x− y ‖γ, ∀ θ ∈ K̃n,
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where
K̃n = {θ ∈ ]0, 1[, 2nθ ∈ N}.

If n = 1, then (P1) reduces to (1.2). Assuming (Pn) to hold for some n ∈ N, we will prove it
for n+ 1.
Let θ ∈ K̃n+1 \ K̃n( since K̃n ⊂ K̃n+1 ), then there exist θ1, θ2 ∈ K̃n ∪ {0, 1} such that
θ = θ1+θ2

2
with θ1 < θ2. It follows by (1.2)

f(θx+ (1− θ)y) ≤ 1

2
f(θ1x+ (1− θ1)y) +

1

2
f(θ2x+ (1− θ2)y)− c(θ2 − θ1)γ ‖ x− y ‖γ .

Using the induction assumption, we get

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)− c

2
‖ x− y ‖γ .

What means that (Pn+1) is verified and then (Pn) holds for all n ∈ N. So

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)− c

2
‖ x− y ‖γ, ∀ θ ∈ ∪

n
K̃n.

Since min(θ, 1− θ) ≤ 1
2
, then

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)− cmin(θ, 1− θ) ‖ x− y ‖γ, ∀ θ ∈ ∪
n≥0

Kn,

where
Kn = {θ ∈ [0, 1], 2nθ ∈ N}.

Now let θ ∈ [0, 1]. Since [0, 1] = ∪
n≥0

Kn, then there exists (θn) ∈ ∪
n≥0

Kn such that θn → θ and
so

f(θnx+ (1− θn)y) ≤ θnf(x) + (1− θn)f(y)− cmin(θn, 1− θn) ‖ x− y ‖γ .

However f is l.s.c., thus

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)− cg(θ) ‖ x− y ‖γ,
where g(θ) = min(θ, 1 − θ). Since θ ∈ [0, 1] and x, y ∈ V are arbitrary and the fact that
g(0) = g(1) = 0 and lim

θ→0

g(θ)
θ
< +∞, we deduce that f is γ-strongly convex. �

When f is Gâteaux-differentiable function we get the following result.

Proposition 1.5. Let f : V → R ∪ {+∞} be a Gâteaux-differentiable function and γ ≥ 1.
Then the following assertions are equivalent

i): f is γ-strongly convex,
ii): < f ′(x), y − x >≤ f(y)− f(x)− c

γ
‖ x− y ‖γ, ∀x, y ∈ V .

Proof. i) ⇒ ii) Let x, y ∈ V be fixed. Since f is γ-strongly convex then there exist c > 0 and
g : [0, 1]→ R+ with lim

θ→0

g(θ)
θ
< +∞ and g(0) = g(1) = 0, such that

f(θy + (1− θ)x) ≤ θf(y) + (1− θ)f(x)− cg(θ) ‖ x− y ‖γ .

We may assume without loss of generality that lim
θ→0

g(θ)
θ

= 1. Dividing by θ ∈]0, 1] and passing
to the limit as θ → 0, we obtain for all x, y ∈ V

< f ′(x), y − x >≤ f(y)− f(x)− c

γ
‖ x− y ‖γ .

ii) ⇒ i) We have for all x, y ∈ V and all θ ∈ [0, 1]

−θ < f ′(θy + (1− θ)x), y − x >≤ f(x)− f(θy + (1− θ)x)− c

γ
θγ ‖ x− y ‖γ,
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(1− θ) < f ′(θy + (1− θ)x), y − x >≤ f(y)− f(θy + (1− θ)x)− c

γ
(1− θ)γ ‖ x− y ‖γ .

And so

−(1−θ)θ < f ′(θy+(1−θ)x), y−x >≤ (1−θ)f(x)−(1−θ)f(θy+(1−θ)x)− c
γ

(1−θ)θγ ‖ x−y ‖γ,

θ(1− θ) < f ′(θy + (1− θ)x), y − x >≤ θf(y)− θf(θy + (1− θ)x)− c

γ
θ(1− θ)γ ‖ x− y ‖γ .

Then
f(θy + (1− θ)x) ≤ θf(y) + (1− θ)f(x)− cg(θ) ‖ x− y ‖γ,

with g(θ) = 1
γ
((1 − θ)θγ + θ(1 − θ)γ), since γ ≥ 1 then lim

θ→0

g(θ)
θ

< +∞ and g(0) = g(1) = 0.
Which completes the proof. �

2. The γ-subdifferentiability.

In this section we highlight a new subdifferentiability that will be called the γ-subdifferentiability.
When f is convex we show that this subdifferential is smaller than the Fenchel subdifferential.

Definition 2.1. Let f : V → R ∪ {+∞} be an extended real-valued function, x ∈ domf ,
γ > 0 and c > 0. We will say that x∗ ∈ V ∗ is local (γ, c)−subgradient of f at x if there exists
δ > 0 such that

< x∗, y − x >≤ f(y)− f(x)− c

γ
‖ y − x ‖γ, ∀y ∈ B(x, δ).

The set of all local (γ, c)−subgradients of f at x will be denoted by ∂loc(γ,c)f(x). When x 6∈ domf
then ∂loc(γ,c)f(x) = ∅. This set can be expressed globally in the following sense, for all x ∈ domf

∂(γ,c)f(x) = {x∗ ∈ V ∗, < x∗, y − x >≤ f(y)− f(x)− c

γ
‖ y − x ‖γ, ∀y ∈ V },

and ∂(γ,c)f(x) = ∅ when x 6∈ domf .

Remark 2.2. a)It is clear that the set of local (γ, c)−subgradients at x is convex and weak-star
closed.
b)If the function ϕ := f − c

γ
‖ x − . ‖γ is convex then it is easy to check that x∗ ∈ ∂ϕ(x) iff

x∗ ∈ ∂(γ,c)f(x).

Example 2.3. As an example we consider the real function f(x) :=| x |. It is easy to show
that ∂(1,c)f(0) = [c− 1, 1− c] when c ≤ 1 and ∂(1,c)f(0) = ∅ when c > 1.

The following proposition shows that when f is convex, the set ∂loc(γ,c)f is smaller than the
Fenchel subdifferential.

Proposition 2.4. Let f : V → R ∪ {+∞} be an extended real-valued function, proper and
convex, γ > 0 and c > 0. Then for any x ∈ domf one has

∂loc(γ,c)f(x) ⊂ ∂f(x).

Proof. Let x ∈ domf and x∗ ∈ ∂loc(γ,c)f(x), then there exists a real positive number δ > 0 such
that

< x∗, y − x >≤ f(y)− f(x)− c

γ
‖ y − x ‖γ, ∀y ∈ B(x, δ).

So
< x∗, y − x >≤ f(y)− f(x), ∀y ∈ B(x, δ).

https://doi.org/10.28919/ejma.2021.1.5
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Now if y 6∈ B(x, δ). Let z = x+ θ(y − x) with θ < δ
‖y−x‖ . So z ∈ B(x, δ) and hence

< x∗, z − x >≤ f(z)− f(x).

It follows by the convexity of f that

< x∗, y − x >≤ f(y)− f(x),

which implies that x∗ ∈ ∂f(x). �

The following example shows that in general the inclusion of Proposition 2.4 is strict.

Example 2.5. Let V = R and let f be given by f(x) =| x |. We have ∂f(0) = [−1, 1] while
1 6∈ ∂loc(γ,c)f(0). Indeed if 1 ∈ ∂loc(γ,c)f(0) then there exists δ > 0 such that

y ≤| y | −c | y |γ, ∀y ∈]− δ, δ[.

Let y = δ
2
then δ ≤ 0 which is not true.

Proposition 2.6. Let f : V → R ∪ {+∞} be an extended real-valued function, proper and
γ-strongly convex with γ > 1 and c > 0. Then

∂loc(γ,c)f(x) = ∂(γ,c)f(x), ∀x ∈ V.

Proof. Obviously ∂(γ,c)f(x) ⊂ ∂loc(γ,c)f(x). Conversely let x ∈ domf and x∗ ∈ ∂loc(γ,c)f(x). So there
exists δ > 0 such that

< x∗, y − x >≤ f(y)− f(x)− c

γ
‖ y − x ‖γ, ∀y ∈ B(x, δ).

Now let us assume that y 6∈ B(x, δ) and let z = x + θ(y − x) with 0 < θ < δ
‖y−x‖ . Obviously

z ∈ B(x, δ), thus
< x∗, z − x >≤ f(z)− f(x)− c

γ
‖ z − x ‖γ .

Since f is γ-strongly convex, we obtain

< x∗, θ(y − x) >≤ θ(f(y)− f(x))− c

γ
θγ ‖ y − x ‖γ −cg(θ) ‖ y − x ‖γ .

Dividing by θ and passing to the limit as θ → 0, we obtain

< x∗, y − x >≤ f(y)− f(x)− c ‖ y − x ‖γ .

What means that x∗ ∈ ∂(γ,c)f(x). �

Remark 2.7. When γ = 1 and f is only convex, we show easily that for all x ∈ V , ∂loc(1,c)f(x) =

∂(1,c)f(x).

Proposition 2.8. Let γ ≥ 1 and let f : V → R ∪ {+∞} be an extended real-valued function
and proper. If dom∂(γ,c)f = V then f is γ-strongly convex.

Proof. Let x, y ∈ domf and θ ∈ [0, 1]. Let z = x+ θ(y − x) and z∗ ∈ ∂(γ,c)f(z); then

< z∗, u− z >≤ f(u)− f(z)− c

γ
‖ u− z ‖γ, ∀u ∈ V.

In particular we have

−θ < z∗, y − x >≤ f(x)− f(z)− c

γ
θγ ‖ x− y ‖γ,
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(1− θ) < z∗, y − x >≤ f(y)− f(z)− c

γ
(1− θ)γ ‖ x− y ‖γ .

And so

−(1− θ)θ < z∗, y − x >≤ (1− θ)f(x)− (1− θ)f(z)− c

γ
(1− θ)θγ ‖ x− y ‖γ,

θ(1− θ) < z∗, y − x >≤ θf(y)− θf(z)− c

γ
θ(1− θ)γ ‖ x− y ‖γ .

Therefore
f(θy + (1− θ)x) ≤ θf(y) + (1− θ)f(x)− cg(θ) ‖ x− y ‖γ,

with g(θ) = 1
γ
((1 − θ)θγ + θ(1 − θ)γ), since γ ≥ 1 then lim

θ→0

g(θ)
θ

< +∞ and g(0) = g(1) = 0.
Which shows that f is γ-strongly convex. �

Proposition 2.9. Let f : V → R ∪ {+∞} be an extended real-valued function and proper.
Suppose that f is γ-strongly convex with constant c > 0 and γ ≥ 1, then

∂(γ,c)f(x) = ∂f(x), ∀x ∈ V.

Proof. Let x, y ∈ domf . Clearly ∂(γ,c)f(x) ⊂ ∂f(x). Now let x∗ ∈ ∂f(x) then for all z ∈ V

< x∗, z − x >≤ f(z)− f(x).

Let z = x+ θ(y − x) with θ ∈]0, 1[, we obtain by γ-strong convexity of f

θ < x∗, y − x >≤ θ(f(y)− f(x))− cg(θ) ‖ y − x ‖γ .

We may assume without loss of generality that lim
θ→0

g(θ)
θ

= 1. Dividing by θ ∈]0, 1] and passing
to the limit as θ → 0, we get x∗ ∈ ∂(γ,c)f(x). �

In connection with the results concerning the Fenchel subdifferential, Proposition 2.9 allows
us to deduce the following corollaries.

Corollary 2.10. Let f : V → R ∪ {+∞} be an extended real-valued function, proper and
γ-strongly convex with γ ≥ 1 and constant c > 0. Suppose that f is continuous at x ∈ domf
then

∂(γ,c)f(x) 6= ∅.

Corollary 2.11. Let f : V → R ∪ {+∞} be an extended real-valued function, proper and
γ-strongly convex with γ ≥ 1. Then f is Gâteaux differentiable at a point x ∈ domf iff there
exists a unique x∗ ∈ V ∗ such that for all y ∈ V

< x∗, y − x >≤ f(y)− f(x)− c

γ
‖ y − x ‖γ .

Corollary 2.12. Let f, g : V → R, be two proper l.s.c. and γ−strongly convex functions
with constants c1 and c2 respectively and let γ ≥ 1. Suppose that the qualification condition (Q)
holds,

f is finite and continuous at a point of dom g. (Q)

Then we have
∂(γ,c1)f + ∂(γ,c2)g = ∂(γ,c1+c2)(f + g).

Proposition 2.13. Let f : V → R ∪ {+∞} be an extended real-valued function and proper.
Consider the following assertions :

https://doi.org/10.28919/ejma.2021.1.5
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(a): 0 ∈ ∂(γ,c)f(x).
(b): x is the unique minimum of f .
(c): f(y)− f(x) ≥ c ‖ y − x ‖γ, ∀y ∈ V .

Then (a) and (c) are equivalent and they imply (b). Moreover if f is (γ,c)-convex then the
above assertions are equivalent.

Proof. Obviously (a) is equivalent to (c) and they imply (b). Now suppose that f attains a
minimum at x, then f(y) ≥ f(x) for all y ∈ V . Let y = x+ θ(z−x) where θ ∈]0, 1[ and z ∈ V ,
using the γ-strong convexity of f we obtain

f(x) ≤ θf(z) + (1− θ)f(x)− cg(θ) ‖ z − x ‖γ .

Dividing by θ and passing to the limit as θ → 0, it follows that (c) holds.

�

3. Characterization of lower semicontinuous γ-strongly convex functions.

In this section we establish a characterization of lower semicontinuous γ-strongly convex
functions. We introduce first the notion of γ−strong monotonicity and we prove that an arbi-
trary l.s.c. function is γ−strongly convex iff its presubdifferential map is γ−strongly monotone.

Definition 3.1. Let γ > 0. A set-valued map F : V ⇒ V ∗ is said to be γ−strongly monotone
if there exists a positive real number c such that for all x, y ∈ V , x∗ ∈ F (x) and y∗ ∈ F (y) one
has

< x∗ − y∗, x− y >≥ c ‖ x− y ‖γ .

Remark 3.2. Obviously if F is γ−strongly monotone, then F is monotone.

Remark 3.3. It is clear that the set of (γ, c)−subdifferentials is always γ−strongly monotone
since we have for all x∗ ∈ ∂(γ,c)f(x) and y∗ ∈ ∂(γ,c)f(y)

< x∗ − y∗, x− y >≥ 2c

γ
‖ x− y ‖γ .

In order to prove our result for any classical subdifferential, we recall the following definition,
see [23].

Definition 3.4. We call presubdifferential any operator ∂̃ which satisfies the following prop-
erties :
For any function f : V → R∪ {+∞}, any continuous convex function g : V → R, any λ > 0

and any x ∈ V

i) ∂̃f(x) ⊂ V ∗ and ∂̃f(x) = ∅ whenever x 6∈ domf .
ii) ∂̃f(x) = ∂f(x), whenever f is convex.
iii) ∂̃(f + λg)(x) ⊂ ∂̃f(x) + λ∂̃g(x).
iv) 0 ∈ ∂̃f(x) whenever x is a local minimum point of f .
v) ∂̃f(x) = ∂̃h(x) for any real-extended function h which is equal to f near x.

https://doi.org/10.28919/ejma.2021.1.5


Eur. J. Math. Appl. | https://doi.org/10.28919/ejma.2021.1.5 9

Examples. Clarke’s subdifferential [7], the approximate subdifferential [10, 13] and others
are examples of subdifferentials which verify the conditions above.

Before stating our results we need to recall the approximate mean value theorem established
by Zagrodny [24] in the terms of the Clarke subdifferential which also holds for any presubdif-
ferential satisfying the properties of Definition 3.4, see Thibault [23].

Theorem 3.5. [23,24] Let f : V → R∪ {+∞} be a l.s.c. function and a, b ∈ domf . Then
there exist c ∈]a, b], a sequence (xk) converging to c and x∗k ∈ ∂̃f(xk) such that

i) ‖a−b‖‖a−c‖ lim inf < x∗k, a− xk >≥ f(a)− f(b).

ii) lim inf < x∗k, a− b >≥ f(a)− f(b).

Recall also the characterization of l.s.c. convex functions due to R. Correa, A. Jofré and L.
Thibault [9] and J. M. Borwein’s theorem which has a formidably long list of conclusions [5].

Theorem 3.6. [9] If f : V → R ∪ {+∞} is l.s.c. and if ∂̃f is monotone then f is convex.

Theorem 3.7. [5] Let f : V → R ∪ {+∞} be a proper convex and l.s.c. function, ε > 0

and β ≥ 0. Suppose that x0 ∈ domf and x∗0 ∈ ∂εf(x0). Then there exist points xε ∈ domf and
x∗ε ∈ V ∗ such that

1) x∗ε ∈ ∂f(xε). 2)‖ xε − x0 ‖≤
√
ε.

3) x∗ε ∈ ∂2εf(x0). 4)‖ x∗ε − x∗0 ‖∗≤
√
ε(1 + β ‖ x∗0 ‖∗).

5) | f(xε)− f(x0) |≤
√
ε(
√
ε+ 1/β).

6) |< x∗ε − x∗0, y >|≤
√
ε(‖ y ‖ +β |< x∗0, y >|), for all y ∈ V.

Now, we are ready to prove the first result on the equality between the presubdifferential
and (γ, c)−subdifferential.

Theorem 3.8. Let f : V → R ∪ {+∞} be a proper and l.s.c. function and suppose that ∂̃f
is γ−strongly monotone, then ∂(γ,c)f(x) = ∂̃f(x) for all x ∈ V.

Proof. In view of Theorem 3.6, f is in addition convex since ∂̃f is γ−strongly monotone.
Obviously when x 6∈ domf , then equality holds. Let x, y ∈ domf . If we set ϕ(θ) = f(x+θ(y−
x)) and zθ = x+ θ(y − x) with θ ∈ [0, 1], then for all s, t ∈]0, 1[ such that s<t one has

ϕ(t)− ϕ(s) =

∫ t

s

d+f(zθ)(y − x)dθ.

We are justified in the equality above since ϕ is continuous on ]0, 1[ and d+f(zθ)(y−x) is finite
in this case. One has

d+f(zθ)(y − x) = lim
ε→0+

sup{< x∗ε,θ, y − x >, x∗ε,θ ∈ ∂εf(zθ)}.

Let δ > 0 be a positive real number, then there exists a positive real number α with α < δ such
that

d+f(zθ)(y − x)− δ < sup{< x∗α,θ, y − x >, x∗α,θ ∈ ∂αf(zθ)} < d+f(zθ)(y − x) + δ.

Thus for all x∗α,θ ∈ ∂αf(zθ), one has

ϕ(t)− ϕ(s) >

∫ t

s

< x∗α,θ, y − x > dθ − δ(t− s).
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By applying Theorem 3.7 with ε = θ2α and x∗α,θ ∈ ∂θ2αf(zθ) there exist uα,θ ∈ domf and
u∗α,θ ∈ V ∗ such that

1) u∗α,θ ∈ ∂f(uα,θ). 2)‖ uα,θ − zθ ‖≤ θ
√
α.

3) u∗α,θ ∈ ∂2θ2αf(zθ) 4)‖ u∗α,θ − x∗α,θ ‖∗≤ θ
√
α(1+ ‖ x∗α,θ ‖∗).

5) | f(zθ)− f(uα,θ) |≤ θ
√
α(θ
√
α + 1).

6) |< u∗α,θ, u > − < x∗α,θ, u >|≤ θ
√
α(‖ u ‖ + |< x∗α,θ, u >|), ∀u ∈ V.

So

ϕ(t)−ϕ(s) >

∫ t

s

< x∗α,θ−u∗α,θ, y−x > dθ+

∫ t

s

1

θ
< u∗α,θ, zθ−uα,θ > dθ+

∫ t

s

1

θ
< u∗α,θ, uα,θ−x > dθ−δ(t−s).

Let x∗ ∈ ∂̃f(x), then

ϕ(t)−ϕ(s) >

∫ t

s

< x∗α,θ−u∗α,θ, y−x > dθ+

∫ t

s

1

θ
< u∗α,θ, zθ−uα,θ > dθ+

∫ t

s

1

θ
< u∗α,θ−x∗, uα,θ−x > dθ+

∫ t

s

1

θ
< x∗, uα,θ − x > dθ − δ(t− s).

We get from 3) and 5) that

< u∗α,θ, zθ − uα,θ >≥ −θ
√
α(θ
√
α + 1)− 2θ2α.

It also follows from 6) that

< x∗α,θ − u∗α,θ, y − x >> −θ
√
α(‖ y − x ‖ + | d+f(zθ)(y − x) | +δ).

Since ∂̃f is γ−strongly monotone, then

ϕ(t)− ϕ(s) >

∫ t

s

−θ
√
α(‖ y − x ‖ + | d+f(zθ)(y − x) | +δ)dθ−

∫ t

s

θ(
√
α(θ
√
α+ 1) + 2θα)dθ+

c

∫ t

s

1

θ
‖ uα,θ − x ‖γ dθ +

∫ t

s

1

θ
< x∗, uα,θ − x > dθ − δ(t− s).

Taking the limit as δ ↓ 0, we obtain that uα,θ → zθ, −
√
α(θ
√
α + 1) − 2θα → 0 and −θ

√
α(‖

y − x ‖ + | d+f(zθ)(y − x) | +δ) → 0. Since each sequence is bounded above by a constant
which belongs to L1([s, t]), we conclude by dominated convergence theorem that

f(x+ t(y − x)) ≥ f(x+ s(y − x)) + (t− s) < x∗, y − x > +
c

γ
(tγ − sγ) ‖ y − x ‖γ .

The inequality above holds for all s, t ∈]0, 1[ such that s < t. By taking the limit s ↓ 0 and
t ↑ 1 and since f is l.s.c. and convex, we get for all x, y ∈ domf

< x∗, y − x >≤ f(y)− f(x)− c

γ
‖ y − x ‖γ,

which is also valid when y 6∈ domf . What means that x∗ ∈ ∂(γ,c)f(x). �

We are now in position to state our main second result. The proof has been inspired by the
work of R. Correa, A. Jofré and L. Thibault [8, 9].

Theorem 3.9. Let f : V → R∪{+∞} be a proper and l.s.c. function. Then ∂̃f is γ−strongly
monotone iff f is γ-strongly convex.
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Proof. Suppose first that the presubdifferential is γ-strongly monotone. Then, Theorem 3.6
ensures that f is convex. Let x, y ∈ domf , and z = y + θ(x− y) with θ ∈]0, 1[. As dom∂̃f is
graphically dense in domf [4, 12], there exists a sequence (yk) in dom∂̃f such that yk → y and
f(yk)→ f(y). Let zk = yk + θ(x− yk). Since f is convex, then zk ∈ domf .
Step 1 : If zk is not a local minimum of f we can choose a vector z′k such that

‖ z′k − zk ‖<
1

k
and f(z′k) < f(zk).

By applying Theorem 3.5 on [zk, z
′
k], we obtain a sequences (zk,n) ∈ V and (z∗k,n) ∈ V ∗ such

that zk,n →
n
ck ∈]zk, z

′
k], z∗k,n ∈ ∂̃f(zk,n), and

lim inf
n

< z∗k,n, zk − zk,n >≥ [f(zk)− f(z′k)]
‖ ck − zk ‖
‖ z′k − zk ‖

≥ 0.

On the other hand we have by Theorem 3.8, z∗k,n ∈ ∂(γ,c)f(zk,n). Hence

f(x)− f(zk,n)− c

γ
‖ x− zk,n ‖γ≥< z∗k,n, x− zk,n >,

and

f(yk)− f(zk,n)− c

γ
‖ yk − zk,n ‖γ≥< z∗k,n, yk − zk,n > .

Which implies by the lower semicontinuity of f that

θf(x) + (1− θ)f(yk)−
c

γ
((1− θ) ‖ yk − ck ‖γ +θ ‖ x− ck ‖γ) ≥ f(ck).

Step 2 : If zk is a local minimum of f then 0 ∈ ∂̃f(zk) = ∂(γ,c)f(zk). Therefore setting ck = zk,
we obtain

f(x)− f(ck)−
c

γ
‖ x− ck ‖γ≥ 0,

and

f(yk)− f(ck)−
c

γ
‖ yk − ck ‖γ≥ 0.

Which implies as in the first step that

θf(x) + (1− θ)f(yk)−
c

γ
((1− θ) ‖ yk − ck ‖γ +θ ‖ x− ck ‖γ) ≥ f(ck).

Since f(yk)→ f(y) and ck → z, we conclude by the lower semicontinuity of f and the inequality
above that

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)− cg(θ) ‖ x− y ‖γ,

with g(θ) = 1
γ
(θ(1−θ)γ+θγ(1−θ)), θ ∈]0, 1[ and x, y ∈ domf . Since lim

θ→0

g(θ)
θ
< +∞ and g(0) =

g(1) = 0, we deduce that f is γ-strongly convex.
The converse sense is obvious by Proposition 2.9. �

As a consequence of Theorem 3.9 is the result due to R. Correa, A. Jofré and L. Thibault [9].

Corollary 3.10. Let f : V → R ∪ {+∞} be a proper and l.s.c. function. Then f is convex
iff its presubdifferential is monotone.

Proof. It suffices to take c=0 in the Theorem 3.8 and Theorem 3.9. �
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Corollary 3.11. Let f : V → R ∪ {+∞} be a Gâteaux-differentiable function and γ ≥ 1.
The function f is γ-strongly convex iff there exists c > 0 such that

(3.1) < f ′(x)− f ′(y), x− y >≥ c ‖ x− y ‖γ,

for all x, y ∈ V .

4. Unconstrained optimization problems in Banach spaces and nonlinear PDE.

The aim of this section is to prove a result concerning a minimization problem by considering
the concept of γ-strong convexity which is divided into two subsections. In the first one we
prove that a l.s.c. proper and γ-strongly convex function has an unique minimum in Banach
spaces. In particular our result establishes an extension of Minty-Browder theorem and hence
deduces Lax-Milgram theorem in Banach spaces. In the second and last subsection we apply
our theory to p-Laplace problem.

4.1. An extension of Minty-Browder theorem. Before stating our result we need to prove
the following lemma. Recall that if f : V → R ∪ {+∞} is proper, l.s.c. and convex function,
then there exist L ∈ V ∗ and δ ∈ R such that for all v ∈ V

f(v) ≥ L(v) + δ.

Recall also Young’s inequality that is for a, b ≥ 0 and γ > 1

ab ≤ 1

γ
aγ +

1

γ′
bγ
′
,

with 1
γ

+ 1
γ′

= 1.

Lemma 4.1. Let f : V → R ∪ {+∞} be an extended real-valued proper, l.s.c. γ-strongly
convex function with γ > 1, then there exist c1 > 0 and η ∈ R such that for all v ∈ V

f(v) ≥ c1 ‖ v ‖γ +η.

Proof. Let v ∈ V , we may assume without loss of generality that 0 ∈ domf then by Proposition
1.4 there exists c > 0 such that

f(v)

2
+
f(0)

2
≥ f(

v + 0

2
) + c ‖ v ‖γ≥ L(v) + L(0)

2
+ c ‖ v ‖γ +δ.

So that
f(v) ≥ 2c ‖ v ‖γ +2δ − f(0)− ‖ L ‖∗‖ v ‖ .

Using Young’s inequality we get

f(v) ≥ 2c ‖ v ‖γ +2δ − f(0)− ε−γ
′

γ′
‖ L ‖γ′∗ −

εγ

γ
‖ v ‖γ, with ε > 0.

By setting η = 2δ − f(0) − ε−γ
′

γ′
‖ L ‖γ′∗ and c1 = 2c − εγ

γ
. By an adequate value of ε > 0 we

finish the proof. �

Theorem 4.2. Let f : V → R∪{+∞} be an extended real-valued proper, l.s.c. and γ-strongly
convex function with γ > 1. Then there exists a unique minimum u ∈ V of f . Moreover there
exists c1 > 0 such that for all v ∈ V

‖ u− v ‖γ≤ c1(f(v)− f(u)).
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Proof. Let {un} be a minimizing sequence of f on V. Since f is bounded from above, using
Proposition 1.4, we get for all n, m ∈ N

c ‖ un − um ‖γ≤
1

2
(f(un)− inf

v∈V
f(v)) +

1

2
(f(um)− inf

v∈V
f(v)).

It follows that {un} is Cauchy sequence and hence converges to a point u ∈ V. Since f is l.s.c.,
u is a minimum of f and, because of the strong convexity of f , this minimum is unique.
Due to Proposition 1.4 again, we have for all v ∈ V

c ‖ u− v ‖γ≤ 1

2
f(u) +

1

2
f(v)− f(

u+ v

2
) ≤ f(v)− f(u)

2
.

Which finishes the proof. �

The following result is an extension of Minty-Browder theorem in Banach spaces for a smaller
class of monotone operators. It can be also viewed when γ = 2 as an extension of nonlinear
Lax-Milgram theorem.

Theorem 4.3. Let V be a Banach space and let A : V → V ∗ be an operator not necessarily
linear satisfying for all u, v ∈ V

< Au− Av, u− v >≥ c ‖ u− v ‖γ,

for some c > 0 and with γ > 1. Let J : V → R∪{+∞} be an extended real-valued proper and
Gâteaux differentiable function such that J ′(u) = Au − L for all u ∈ V where L ∈ V ∗. Then
there is an unique ū ∈ V such that Aū = L.

Proof. Since for all u, v ∈ V < J ′(u)−J ′(v), u− v >≥ c ‖ u− v ‖γ, then by Proposition 3.11 J
is γ-strongly convex. Using Theorem 4.2 we get an unique point ū ∈ V satisfying Aū = L. �

In fact Theorem 4.3 establish a generalized Lax-Milgram theorem in the setting of a Banach
space.

Corollary 4.4. Let a(u, v) be a bilinear form on V (Banach space) such that

(i): a is continuous ( i.e. for some M > 0 | a(u, v) |≤M ‖ u ‖‖ v ‖ ∀u, v ∈ V ).
(ii): a is coercive (i.e. for some α > 0 a(u, u) ≥ α ‖ u ‖2 ∀u ∈ V ).

Then for all L ∈ V ∗, there exists a unique element ū ∈ V such that
1

2
a(ū, .) +

1

2
a(., ū) = L.

Moreover, if a is symmetric, then ū is characterized by the property

a(ū, .) = L.

Proof. In fact it suffices to set J(v) := 1
2
a(v, v)−L(v). Since J ′(u) = 1

2
a(u, .) + a(., u)−L, one

has for all u, v ∈ V

< J ′(u)− J ′(v), u− v >= a(u− v, u− v),

and since a is coercive, then by Proposition 3.11, J is 2-strongly convex. Using Theorem 4.2
we get a unique ū ∈ V such that 1

2
a(ū, .) + 1

2
a(., ū) = L and when a is symmetric we deduce

a(ū, .) = L.

�

https://doi.org/10.28919/ejma.2021.1.5


Eur. J. Math. Appl. | https://doi.org/10.28919/ejma.2021.1.5 14

4.2. Application to p-Laplace problem. To end this paper, we give an important applica-
tion of our results.

Let V := W 1,p
0 (Ω) equipped with the norm ‖ u ‖p=

N∑
i=1

∫
Ω
| ∂u(x)

∂xi
|p dx, where 2 ≤ p < +∞

and Ω ⊂ RN be an open, bounded and regular set. We are going to prove that the following
boundary value problem

(P )

−∆pu = f, on Ω,

u = 0, on ∂Ω,

where ∆pu =
N∑
i=1

∂
∂xi

(| ∂u
∂xi
|p−2 ∂u

∂xi
), has an unique weak solution, which is equivalent to minimize

the function, J : V → R ∪ {+∞} defined by

(4.1) J(u) =
1

p

N∑
i=1

∫
Ω

| ∂u(x)

∂xi
|p dx−

∫
Ω

f(x)u(x)dx,

where f ∈ Lq(Ω) with 1
p

+ 1
q

= 1. To this end, the following proposition is needed.

Proposition 4.5. The following assertions hold :
a)Let 1 < p < +∞ , then the function J is Gâteaux differentiable on V and for any u, v in V,
one has

< J ′(u), v >=
N∑
i=1

∫
Ω

| ∂u(x)

∂xi
|p−2 ∂u(x)

∂xi

∂v(x)

∂xi
dx−

∫
Ω

f(x)v(x)dx.

b)Let 2 ≤ p < +∞, then the function J is p-strongly convex.
c)The boundary value problem (P ) has a unique weak solution u ∈ V.

Proof. a)Set for t > 0, hi(t) :=| ∂u(x)
∂xi

+ t∂v(x)
∂xi
|p with u, v in V. We have h′i(0) = p | ∂u(x)

∂xi
|p−2

∂u(x)
∂xi

.∂v(x)
∂xi

. Since the function, r → rp from R+ into R+ is convex for p ≥ 1 then for any
0 < t < 1

| ∂u(x)

∂xi
+ t

∂v(x)

∂xi
|p≤ (1− t) | ∂u(x)

∂xi
|p +t | ∂u(x)

∂xi
+
∂v(x)

∂xi
|p .

Thus
hi(t)− hi(0)

t
≤| ∂u(x)

∂xi
+
∂v(x)

∂xi
|p .

Since the right-hand side is in L1(Ω), then by Lebesgue’s dominated convergence theorem, we
get

< J ′(u), v >=
1

p

N∑
i=1

∫
Ω

lim
t→0

hi(t)− hi(0)

t
dx−

∫
Ω

f(x)v(x).

Hence

< J ′(u), v >=
N∑
i=1

∫
Ω

| ∂u(x)

∂xi
|p−2 ∂u(x)

∂xi

∂v(x)

∂xi
dx−

∫
Ω

f(x)v(x)dx.

b)Let 2 ≤ p < +∞ and u, v ∈ V . One has by Clarkson’s inequality (see p. 95 [6])

‖ 1

2
(
∂u

∂xi
+
∂v

∂xi
) ‖pLp + ‖ 1

2
(
∂u

∂xi
− ∂v

∂xi
) ‖pLp≤

1

2
(‖ ∂u
∂xi
‖pLp + ‖ ∂v

∂xi
‖pLp),

for any 1 ≤ i ≤ N . Therefore

J(
u+ v

2
) ≤ 1

2
(J(u) + J(v))− c ‖ u− v ‖p,
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where c = 1
2p
. Since J is l.s.c. then by Proposition 1.4 we may deduce that J is p-strongly convex.

c)The assertions a) and b) allow us to deduce that J is p-strongly convex and Gâteaux
differentiable for 2 ≤ p < +∞. Therefore by Theorem 4.2 there exists c > 0 such that for any
v ∈ V

c ‖ u− v ‖p≤ f(v)− f(u).

Which is equivalent to 0 ∈ ∂(p,c)J(u) and since J is Gâteaux differentiable we may conclude
that J ′(u) = 0, what means

N∑
i=1

∫
Ω
| ∂u(x)

∂xi
|p−2 ∂u(x)

∂xi

∂v(x)
∂xi

dx =
∫

Ω
f(x)v(x)dx, ∀ v ∈ V,

u ∈ V.

Or equivalently,−
N∑
i=1

∫
Ω

∂
∂xi

(| ∂u(x)
∂xi
|p−2 ∂u(x)

∂xi
)vdx =

∫
Ω
f(x)v(x)dx, ∀ v ∈ V,

u = 0 on ∂Ω.

Indeed this boundary value problem is the nonlinear Laplacian so-called p-Laplacian which is
Dirichlet problem. In particular u is a weak solution of the boundary value problem−∆pu = f, on Ω,

u = 0, on ∂Ω,

�

Corollary 4.6. Let 2 ≤ p < +∞. Then there exists c > 0 such that for any u, v ∈ V
N∑
i=1

∫
Ω

(| ∂u(x)

∂xi
|p−2 ∂u(x)

∂xi
− | ∂v(x)

∂xi
|p−2 ∂v(x)

∂xi
)(
∂u(x)

∂xi
−∂v(x)

∂xi
)dx ≥ c

N∑
i=1

∫
Ω

| ∂u(x)

∂xi
−∂v(x)

∂xi
|p dx.

Proof. This fact is a consequence of Proposition 4.5 and Corollary 3.11. �
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