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THE NEW RESULTS IN n-ABELIAN CATEGORY

SAMIRA HASHEMI, FEYSAL HASSANI, AND RASUL RASULI∗

Abstract. In this paper, we study the homological theory in n-abelian categories. First, we
prove some useful properties of n-pushout diagram and n-pullback diagram. Finally, we recall
the definition of theory in n-abelian categories.

1. Introduction

Category theory formalizes mathematical structures and its concepts in terms of a labeled
directed graph called a category, whose nodes are called objects, and their edges called arrows
(or morphisms). This category has two basic properties: the ability to compose the arrows
associatively and the existence of an identity arrow for each object. The language of category
theory has been employed to formalize concepts of other high-level abstractions such as sets,
rings, and groups. Several terms were utilized in category theory, including the ”morphism” that
is used differently from their usage in the rest of mathematics. In category theory, morphisms
obey specific conditions of theory. Samuel Eilenberg and Saunders Mac Lane introduced the
concepts of categories, functors, and natural transformations in 1942-45 in their study of alge-
braic topology, to understand the processes that preserve the mathematical structure. Category
theory has practical applications in programming language theory, for example, the usage of
monads in functional programming. It may also be used as an axiomatic foundation for math-
ematics, as an alternative to set theory and other proposed foundations. In mathematics, an
abelian category is a category in which morphisms and objects can be added and in which
kernels and cokernels exist and have desirable properties. The motivating prototype example
of an abelian category is the category of abelian groups, Ab. The theory originated to unify
several cohomology theories by Alexander Grothendieck and independently in the slightly ear-
lier work of David Buchsbaum. Abelian categories are very stable categories. For example,
they are regular and satisfy the snake lemma. The class of Abelian categories is closed under
several categorical constructions, for instance, the category of chain complexes of an Abelian
category, or the category of functors from a small category to an Abelian category are Abelian
as well. These stability properties make them inevitable in homological algebra and beyond.
This theory has significant applications in algebraic geometry, cohomology, and pure category
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theory. The Abelian categories are named after Niels Henrik Abel. An exact sequence is a con-
cept in mathematics, especially in group theory, ring, and module theory, homological algebra,
as well as in differential geometry. An exact sequence is a sequence, either finite or infinite, of
objects and morphisms between them such that the image of one morphism equals the kernel
of the next. Homological algebra is the branch of mathematics that studies homology in a
general algebraic setting. It is a relatively young discipline, whose origins can be traced to in-
vestigations in combinatorial topology (a precursor to algebraic topology) and abstract algebra
(theory of modules and syzygies) at the end of the 19th century, chiefly by Henri Poincar´e
and David Hilbert. The development of homological algebra has closely intertwined with the
emergence of category theory. By and large, homological algebra is the study of homological
functors and the intricate algebraic structures that they entail. One quite useful and ubiqui-
tous concept in mathematics is that of chain complexes, which can be studied both through
their homology and cohomology. Homological algebra affords the means to extract information
contained in these complexes and present it in the form of homological invariants of rings, mod-
ules, topological spaces, and other ’tangible’ mathematical objects. A powerful tool for doing
this is provided by spectral sequences. From its very origins, homological algebra has played
an enormous role in algebraic topology. Its sphere of influence has gradually expanded and
presently includes commutative algebra, algebraic geometry, algebraic number theory, repre-
sentation theory, mathematical physics, operator algebras, complex analysis, and the theory of
partial differential equations. K-theory is an independent discipline that draws upon methods
of homological algebra, as does the noncommutative geometry of Alain Connes.

Abelian categories were introduced by Grothendieck in [7] to axiomatize the properties of
the category of modules over a ring and of the category of sheaves over a scheme. It is often
the case that interesting additive categories are not abelian but still have good homological
properties with respect to a restricted class of short exact sequences.

In this paper in section 2 we show to prove the important theorems of n-pushout diagram, n-
pullback diagram and in section 3 we show that any small n-abelian category can be embedded
in an abelian category in such a way that the embedding functor is n-exact and reflects n-
exact sequences.We introduce n-abelian categories and establish their basic properties; we give
a characterization of semisimple categories in terms of n-abelian categories.

2. Preliminaries

All rings R in this paper are assumed to have an identity element 1 (or unit) (where r1 =

r = 1r for all r ∈ R). We do not insist that 1 6= 0; however, should 1 = 0, then R is the zero
ring having only one element.

In this section, we recall some of the fundamental concepts and definitions, which are neces-
sary for this paper. For details, we refer to [2,3,5,11,12].

Definition 2.1. A category C is abelian if

(1) C has a zero object.

(2) For every pair of objects there is a product and a sum.

(3) C Every map has a kernel and cokernel.
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(4) C Every monomorphism is a kernel of a map.

(5) C Every epimorphism is a cokernel of a map.

Definition 2.2. Let C be an additive category and f : A −→ B a morphism in C. A weak
cokernel of f is a morphism g : B −→ C such that for all C ′ ∈ C the sequence of abelian groups

C(C,C ′) ĝ−→ C(B,C ′) f̂−→ C(A,C ′)

is exact. Equivalently, g is a weak cokernel of f if fg = 0 and for each morphism h : B −→ C ′

such that fh = 0 there exists a (not necessarily unique) morphism p : C −→ C ′ such that
h = gp. These properties are subsumed in the following commutative diagram:

A B C

C ′

f

0

g

∀h
∃p

Clearly, a weak cokernel g of f is a cokernel of f if and only if g is an epimorphism.The concept
of weak kernel is

defined dually.

Definition 2.3. Let C be an additive category and d0 : X0 −→ X1 a morphism in C. An
n-coker of d0 is a sequence

(d1, ..., dn) : X1 d1−→ X2 d2−→ ...
dn−→ Xn+1

such that, , for all Y ∈ C the induced sequence of abelian groups

0 −→ C(Xn+1, Y )
d̂n−→ C(Xn, Y )

d̂n−1

−→ ...
d̂1−→ C(X1, Y )

d̂0−→ C(X0, Y )

is exact. Equivalently, the sequence (d1, ..., dn) is an n-coker of d0 if, , for all 1 ≤ k ≤ n− 1 the
morphism dk is a weak cokernel of dk−1, and dn is moreover a cokernel of dn−1. In this case, we
say the sequence

X0 d0−→ X1 d1−→ X2 d2−→ ...
dn−→ Xn+1

is right n-exact.

Remark 2.4. When we say n-cokernel we always means that n is a positive integer. We note
that the notion of 1-cokernel is the same as cokernel. we can define n- kernel and left n-exact
sequence dually.

Definition 2.5. Let C be an additive category. An n-exact sequence in C is a complex

(2.1) X0 d0−→ X1 d1−→ ...
dn−1

−→ Xn dn−→ Xn+1

in Chn(C) such that (d0, ..., dn−1) is an n-ker of dn, and (d1, ..., dn) is an n-coker of d0. The
sequence (3.1) is called n-exact if it is both right n-exact and left n-exact.

Definition 2.6. Let C be an additive category. A pushout diagram of a pair of morphisms

X Z

Y

f

g
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in C can be identified with a cokernel of the morphism [−gf ]> : X −→ Z ⊕ Y . This motivates
us to introduce the following concept.

Definition 2.7. An additive category C is semisimple if every morphism f : A −→ B in C
factors as f = pi, where p is a split epimorphism and i is a split monomorphism.

Lemma 2.8. Let C be an additive category and X ∈ Ch≥0(C) a complex such that for all k ≥ 0

the morphism dk+1
X is a weak cokernel of dkX . If f : X −→ Y and g : X −→ Y are morphisms

in Ch≥0(C) such that f 0 = g0, then there exists a homotopy h : f −→ g such that h1 is the zero
morphism.

Proposition 2.9. Let C be an additive category and X and Y be com plexes in Chn(C) which
are isomorphic in in H(C). Then the following statements hold.

(1) The complex X is an n-exact sequence if and only if Y is an n-exact sequence.
(2) Every contractible complex with n+ 2 terms is an n-exact sequence.

Proposition 2.10. Let C be an additive category and X a complex in Chn(C) such that
(d1, ..., dn) is an n-cokernel of d0. Then, d0 is a split monomorphism if and only if X is a
contractible n-exact sequence.

Proposition 2.11. Let C be an additive category and f : X −→ Y a morphism of n-exact
sequences in C such that fk and fk+1 are isomorphisms for some k ∈ {1, ..., n}. Then, f
induces an isomorphism in H(C).

Proposition 2.12. Let f be a morphism in the quasi-abelian category C. The canonical mor-
phism f̂ : Coimf −→ Imf is monomorphism and epimorphism.

Proof. By duality it suffices to check that the morphism f̄ in the diagram

A B

Coimf

j

f

f̄

is monomorphism. Let x : X −→ Coimf be a morphism such that f̄x = 0.The pull-back
y : Y −→ A of x along j satisfies fy = 0, so y factors over ker f and hence jy = 0. But then
the map Y � X −→ Coimf is zero as well,so x = 0. �

3. n-pushout diagram and n-pullback diagram

Definition 3.1. Let n be a positive integer. An n-abelian category is an additive category C
which satisfies the following axioms;
(A0) The category C is idempotent complete.
(A1) Every morphism in C has n-ker and n-coker.
(A2) For every monomorphism f 0 : X0 −→ X1 in C and, for every n-cokernel (f 0, f 1, ..., fn−1)

of f 0, the following sequence n-exact:

X0 f0−→ X1 f1−→ ...
fn−1

−→ Xn fn−→ Xn+1.
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(A2op) For every epimorphism gn : Xn −→ Xn+1 in C and, for every n-kernel (g0, g1, ..., gn−1)

of gn, the following sequence n-exact:

X0 g0−→ X1 g1−→ ...
gn−1

−→ Xn gn−→ Xn+1.

Let us give some important remarks regarding Definition 3.1.

Remark 3.2. By Proposition 2.9 and Proposition 2.11 we can replace axiom (A2) by the following
weaker version:
(A2∗) For every monomorphism f 0 : X0 −→ X1 in C there exists an n-exact sequence:

X0 f0−→ X1 f1−→ ...
fn−1

−→ Xn fn−→ Xn+1.

Naturally, we can weaken axiom (A2op) in a dual manner.

Definition 3.3. Let C be an additive category, X a complex in Chn−1(C)
X X0 X1 X2 ... Xn−1 Xn

Y Y 0 Y 1 Y 2 ... Y n−1 Y n

.

f f0 fn

The mapping cone C = C(f) ∈ Chn−1(C) is

X0 d−1
c−→ X1 ⊕ Y 0 d0c−→ ...

dn−2
c−→ Xn ⊕ Y n−1 dn−1

c−→ Y n.

where

dkc :=

[
−dk+1

X 0

fk+1 dkY

]
: Xk+1 ⊕ Y k −→ Xk+2 ⊕ Y k+1

for each k ∈ {−1, 0, 1, ..., n− 1}. In particular

d−1
c =

[
−d0

X

f 0

]
and dn−1

c =
[
fn dn−1

Y

]
.

(1) the diagram f : X −→ Y is called n-pullback diagram of Y along fn if the sequence
(d−1
c , ..., dn−2

c ) is an n-kernel of dn−1
C ;

(2) the diagram f : X −→ Y is called n-pushout diagram of X along f 0 if the sequence
(d0
c , ..., d

n−1
c ) is an n-cokernel of d−1

C ;
(3) the diagram f : X −→ Y is called n-bicartesian (or, n-exact diagram) if the sequence
C(f) = (d−1

c , d0
C , ..., d

n−1
c ) is an n-exact sequence;

Proposition 3.4. Let C be an additive category. Suppose that we are given an n-pushout
diagram

X X0 X1 X2 ... Xn−1 Xn

Y Y 0 Y 1 Y 2 ... Y n−1 Y n

.

f g0
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and let k ∈ {0, 1, ..., n − 1}. If dk+1
Y is a weak cokernel of dkY , then dk+1

X is a weak cokernel of
dkX .

Proof. Put C := C(f) and let u : Xk+1 −→ M be a morphism such that dkXu = 0. Consider
the solid part of the following commutative diagram;

Xk Xk+1 Xk+1

Y k−1 Y k Y k+1 Y k+2

M

fk fk+1

u

fk+2

h

0
v

w

Given that dkC : Xk+1 ⊕ Y k −→ Xk+2 ⊕ Y k+1 is a weak cokernel of d−1
C : Xk ⊕ Y k−1 −→

Xk+1 ⊕ Y k, there exist morphisms v : Y k+1 ⊕M and h : Xk+2 −→ M such that dkY v = 0 and
u−fk+1v = dk+1

X h. Since dk+1
Y is a weak cokernel of dkY there exists a morphism w : Y k+2 −→M

such that v = dk+1
Y w. Therefore we have

u = dk+1
X h+ fk+1v

= dk+1
X h+ fk+1(dk+1w)

= dk+1
X (h+ fk+2w)

This shows that dk+1
X is a weak cokernel of dkX . �

Proposition 3.5. Let C be an additive category, g : X −→ Z a morphism of complexes in
Chn−1(C) and suppose there exists an n-pushout diagram of X along g0

X X0 X1 X2 ... Xn−1 Xn

Y Y 0 = Z0 Y 1 Y 2 ... Y n−1 Y n

.

f g0

Then, there exists a morphism of complexes p : Y −→ Z such that p0 = 1Z0 and a homotopy
h : fp −→ g with h1 = 0. Moreover, these properties determine p uniquely up to homotopy.

Proof. Let h1 : X1 −→ Z0 be the zero morphism, p0 = 1Z0 and C := C(f). Inductively, suppose
that 0 ≤ k ≤ n and that for all l ≤ k we have constructed a morphism pl : Y l −→ Z l such that
dl−1
Y pl = pl−1dl−1

Z and a morphism hl+1 : X l+1 −→ Z l such that f lpl − gl = hldl−1
Z + dlXh

l+1.
We claim that the composition

Xk ⊕ Y k−1

−dkX 0

fk dk−1
Y


−−−−−−−−−−→ Xk+1 ⊕ Y k

[
gk+1 − hk+1dkZ pkdkZ

]
−−−−−−−−−−−−−−−−−→ Zk+1

vanishes. Indeed, on one hand we have

fk(pkdkZ) = (gk + dkXh
k+1)dkZ = dkX(gk+1 − hk+1dkZ).

On the other hand, we have

dk−1
Y (pkdkZ) = pk−1dk−1

Z dkZ = 0.
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The claim follows.
Next, since dkC is a weak cokernel of dk−1

C , there exists a morphism pk+1 : Y k+1 −→ Zk+1

such that dkY pk+1 = pkdkZ and a morphism hk+2 : Xk+2 −→ Y k+1 such that

gk+1 + hk+1dkZ = −dk+1
X hk+2 + fk+1pk+1.

This finishes the induction step, and the construction of the required morphism p : Y −→ Z.
Moreover, h : fp −→ g is a homotopy (note that hn+1 = 0). �

Proposition 3.6. Let C be an additive category and g0 : X0 −→ Z0 a morphism in C. Suppose
that there exists an n-pushout diagram of X ∈ Chn−1(C) along g0

X X0 X1 X2 ... Xn−1 Xn

Y Y 0 = Z0 Y 1 Y 2 ... Y n−1 Y n

.

f g0

Then, the following statements hold:
(i) There exists an n-pushout diagram f̂ : X −→ Ŷ of X along g0 such that for every morphism
g : X −→ Z of complexes lifting g0 and such that Z ∈ Chn−1(C) there exists a morphism of
complexes p : Y −→ Z such that p0 = 1Z0 and f̂p = g.
(ii) For each 2 ≤ k ≤ n the morphism f̂k is a split monomorphism.
(iii) We have Ŷ = Y ⊕X0 for a contractible complex X0 ∈ Chn−1(C).

We call the morphism f̂ : X −→ Ŷ a good n-pushout diagram of X along g0.

Proof. If n = 1 the result is trivial, so we may assume that n ≥ 2. For C ∈ C and k ∈ Z, let
ik(C) be the complex with dk = 1C and which is 0 in each degree different from k and k+1. We
define X ′ :=

⊕n
k=2 ik−1(Xk) and Ŷ := Y ⊕X0. Note that Ŷ 0 = Y 0 and that X0 is contractible

complex. It readily follows that the diagram

X X0 X1 X2 ... Xk ... Xn

Y Y 0 = Z0 Y 1 Y 2 ... Y k ... Y n

.

f̂ g0=f0

f1
d1X



f2

1

d2X



fk

1

dkX


fn

1



commutes. Observe that for each 2 ≤ k ≤ n the morphism f̂k is a split monomorphism. Using
Proposition 3.5, it is easy to show that f̂ has the required factorization property; the details
are left to the reader. �

Proposition 3.7. Let C be an additive category, g : Z −→ Y and f : Y −→ X are morphisms
in Chn−1(C). Then we have the following statements:
(i) If f : Y −→ X is an n-pullback diagram of X along fn and g : Z −→ Y is an n-pullback
diagram of Y along gn, then fg : Z −→ X is an n-pullback diagram of X along fngn.
(ii) If f : Y −→ X is an n-pullback diagram of X along fn and fg : Z −→ X is an n-pullback
diagram of X along fngn, then g : Z −→ Y is an n-pullback diagram of Y along gn.

Proof. We have a commutative diagram

https://doi.org/10.28919/ejma.2021.1.4
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(3.1)

C(g) Z0 Z1 ⊕ Y 0 Z2 ⊕ Y 1 ... Zn ⊕ Y n−1 Y n

C(fg) Z0 Z1 ⊕X0 Z2 ⊕X1 ... Zn ⊕Xn−1 Xn

C(f) Y 0 Y 1 ⊕X0 Y 2 ⊕X1 ... Y n ⊕ Y n−1 Xn

ϕ ϕ−1=1Z0

d−1
C(g)

d0
C(g)

ϕ0

d1
C(g)

ϕ1

dn−1
C(g)

ϕn−1 ϕn=fn

ψ

d−1
C(fg)

ψ−1=g0

d0
C(fg)

ψ0

d1
C(fg)

ψ1

dn−1
C(fg)

ψn−1 ψn=1Xn

d−1
C(f)

d0
C(f)

d1
C(f)

dn−1
C(f)

where

ϕk =

[
1Zk+1 0

0 fk

]
, ψk =

[
gk+1 0

0 1Xk

]
for k ∈ {1, 2, ..., n− 1}.
(i) f : Y −→ X is an n-pullback diagram of X along fn and g : Z −→ Y is an n-pullback
diagram of Y along gn, then (d−1

C(f), ..., d
n−2
C(f)) and (d−1

C(g), ..., d
n−2
C(g)) are n-kernels of d

n−1
C(f) and d

n−1
C(g)

respectively, d−1
C(f) and d−1

C(g) are monomorphisms. Hence d−1
C(fg) is a monomorphism. Indeed,

let u : M −→ Z0 be a morphism such that d−1
C(fg)u = 0. Then d0

Zu = 0. But 0 = ψ0d−1
C(fg)u =

d−1
C(f)g

0u, this implies g0u = 0 since d−1
C(f) is a monomorphism. Thus d−1

C(g)u = 0 so is u since
d−1
C(g) is a monomorphism. So, d−1

C(fg) is a monomorphism. Thus di−1
C(fg) is a weak kernel of diC(fg)

for i = {0, ..., n− 1} (we consider X−1, Y −1, Y −1, Xn+1, Y n+1, Y n+1 as 0 objects). Indeed, let[
ui+1

vi

]
: M −→ Zi+1 ⊕X i

be a morphism such that diC(fg)

[
ui+1

vi

]
= 0, hence we have diC(f)ψ

i

[
ui+1

vi

]
= 0. Then

di+1
Z ui+1 = 0, f i+1gi+1ui+1 + diXv

i = 0,

and there exists a morphism [
wi

ti−1

]
: M −→ Y i ⊕X i−1

such that

di−1
C(f)

[
wi

ti−1

]
= ψi

[
ui+1

vi

]
since di−1

C(f) is a weak kernel of diC(f). Then

gi+1ui+1 + diYw
i = 0, f iwi + di−1

X ti−1 = vi.

Then, we have

diC(g)

[
ui+1

wi

]
=

[
−di+1

Z 0

gi+1diY

][
ui+1

wi

]
=

[
−di+1

Z ui+1

gi+1ui+1 + diYw
i

]
= 0

Therefore, since di−1
C(g) is a weak kernel of diC(g), there exists a morhpism[

si

hi−1

]
: M −→ Zi ⊕ Y i−1

https://doi.org/10.28919/ejma.2021.1.4
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such that di−1
C(g)

[
si

hi−1

]
=

[
ui+1

wi

]
. We have that

ui+1 + diZs
i = 0, gisi + di−1

Y hi−1 = wi.

Set [
si

f i−1hi−1 + ti−1

]
: M −→ Zi ⊕X i−1

we have

di−1
C(fg)

[
si

f i−1hi−1 + ti−1

]
=

[
−diZ 0

f igi di−1
X

][
si

f i−1hi−1 + ti−1

]
=

[
ui+1

vi

]
.

This proves that di−1
C(fg) is a weak kernel of diC(fg) for i = {0, ..., n− 1}, thus fg : Z −→ X is an

n-pullback diagram of Y along fngn.
(ii) Because f : Y −→ X is an n-pullback diagram of X along fn and fg : Z −→ X is an
n-pullback diagram of Z along fngn, (d−1

C(f), ..., d
n−2
C(f)) and (d−1

C(fg), ..., d
n−2
C(fg) are n-kernels of d

n−1
C(f)

and dn−1
C(fg) respectively, d

−1
C(f) and d

−1
C(fg) are monomorphisms, so is d−1

C(g) . Hence d
i−1
C(g) is a weak

kernel of diC(g) for i = {0, ..., n− 1}. Indeed, let[
ui+1

vi

]
: M −→ Zi+1 ⊕ Y i

be a morphism such that diC(g)

[
ui+1

vi

]
= 0, we have

di+1
Z ui+1 = 0, gi+1ui+1 + diY v

i = 0, diC(fg)ϕ
i

[
ui+1

vi

]
= 0

Therefore, since di−1
C(fg) is a weak kernel of diC(fg), there exists a morhpism[

si

hi−1

]
: M −→ Zi ⊕X i−1

such that di−1
C(fg)

[
si

hi−1

]
= ϕi

[
ui+1

vi

]
. Thus we have

diZs
i + ui+1 = 0, f igisi + di−1

X hi−1 = f ivi

and

di−1
C(f)

[
vi − gisi

−hi−1

]
=

[
diY v

i + diY g
isi

f ivi − f igisi − di−1
X hi−1

]
= 0

Therefore, since di−2
C(f) is a weak kernel of di−1

C(f) , there exists a morhpism Therefore, since di−1
C(fg)

is a weak kernel of diC(fg), there exists a morhpism[
wi−1

ti−2

]
: M −→ Y i−1 ⊕X i−2

https://doi.org/10.28919/ejma.2021.1.4
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such that di−2
C(f)

[
wi−1

ti−2

]
=

[
vi − gisi

−hi−1

]
. Thus, we have −di−1

Y wi−1 = vi − gisi. Then,

di−1
C(g)

[
si

−wi−1

]
=

[
−diZsi

gisi − di−1
Y wi−1

]
=

[
ui+1

vi

]
This proves that di−1

C(g) is a weak kernel of diC(g) for i = {0, ..., n − 1}, thus g : Z −→ Y is an
n-pullback diagram of Z along gn. �

Proposition 3.8. Let C be an n-abelian category, g : Z −→ Y and f : Y −→ X are morphisms
in Chn−1(C). If f : Y −→ X is an n-pullback diagram of X along fn and g : Z −→ Y is an
n-pullback diagram of Y along gn, then g : Z −→ Y and f : Y −→ X are n-exact diagrams if
and only if fg : Z −→ X is a n-exact diagram.

Proof.
(⇒) This is obvious by the dual of Proposition 3.7.
(⇐) Because f : Y −→ X is a n-pullback diagram of X along fn, (dn−2

C(f), ..., d
−1
C(f)) is a n-kernel

of dn−1
C(f) in the bottom row of Diagram (3.1). The middle row of Diagram (3.1) is an n-exact

sequence by the definition of n-exact diagram and dn−1
C(f) is an epimorphism since dn−1

C(fg) is an
epimorphism. By axiom (A2op) in Definition 3.1 , the bottom row of Diagram (3.1) is an n-
exact sequence, thus g : Z −→ Y is an n-exact diagram. It is enough to show that dn−1

C(g) is
an epimorphism by axiom (A2op) in Definition 3.1 since (d−1

C(g), ..., d
n−2
C(g)) is an n-kernel of dn−1

C(g).
Indeed, let u : Y n −→M be a morphism such that

udn−1
C(g) =

[
ugn udn−1

Y

]
= 0.

Then, [
u 0

]
: Y n ⊕Xn−1 −→M

is a morphism such that
[
u 0

]
dn−2
C(f) = 0. Therefore, since dn−1

C(f) is the cokernel of dn−2
C(f) = 0,

there exists a morphism h : Xn −→M such that h(fndn−1
X ) =

[
u 0

]
. Hence h = 0 since

hdn−1
C(f) =

[
hdn−1

X hfngn
]

= 0

and dn−1
C(fg) is an epimorphism. Thus, u = 0. This proves our assertion. �

Proposition 3.9. Let C be an n-abelian category and

X : X0 f0−→ X1 f1−→ X0 f0−→ ...X0 fn−1

−→ Xn fn−→ Xn+1

a complex in C. Then, for every k ∈ {0, 1, ..., n} and every l ∈ {1, 2, ..., n} there exist morphisms
glk : Y l

k −→ Y l−1
k (with Y 0

k = Xk) and pl−1
k : Y l−1

k −→ Y l
k+1 satisfying the following properties:

(i) For every k ∈ {0, 1, ..., n} the diagram

Y n
k Y n−1

k ... Y 1
k Xk Xk+1

0 Y n
k+1 ... Y 2

k+1 Y 1
k+1

gnk gn−1
k

pn−1
k

g2k

p1k

g1k

p0k

fk

gnk+1 g3k+1 g2k+1

g1k+1

commutes.
(ii) The sequence (gnk , ..., g

1
k) is an n-kernel of fk.

https://doi.org/10.28919/ejma.2021.1.4
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(iii) The diagram

(3.2)
Y n
k Y n−1

k ... Y 1
k Xk

0 Y n
k+1 ... Y 2

k+1 Y 1
k+1

gnk gn−1
k

pn−1
k

g2k

p1k

g1k

p0k

gnk+1 g3k+1 g2k+1

is an n-pullback diagram.
Moreover the morphism [

p0
k g2

k+1

]
: Xk ⊕ Y 2

k+1 −→ Y 1
k+1

is an epimorphism for every k if and only if the complex X is a right n-exact sequence. In this
case we can choose the objects Y lk , 1 ≤ l ≤ n and morphisms glk, 1 ≤ l ≤ n in such a way
that the Diagram (3.2) is both n-pullback and n-pushout diagram.
(iv) If the complex X is a right n-exact sequence and k 6= 0, then the sequence
(gk−1
k , ..., g1

k, fk, ..., f
n) is an n-cokernel of the morphism gkk .

Proof. Let

X : X0 f0−→ X1 f1−→ X0 f0−→ ...X0 fn−1

−→ Xn fn−→ Xn+1

be a right n-exact sequence. Since fn is an epimorphism, there exists an n-exact sequence

Y n
n Y n−1

n ... Y 1
n Xn Xn+1gnn gn−1

n g2n g1n fn

This implies that the diagram

Y n
n Y n−1

n ... Y 1
n Xn

0 0 ... 0 Xn+1

gnn gn−1
n g2n g1n

fn

is both an n-pullback diagram and an n-pushout diagram. Now by induction assume that for
1 ≤ k ≤ n we have the following commutative diagram with the required properties.

0 Y n
k−1 Y n−1

k−1 ... Y 2
k−1 Y 1

k−1 Xk−1

0 Y n
k Y n−1

k−1 ... Y 2
k Y 1

k Xk

...

0 Y n
n Y n−1

n ... Y 2
n Y 1

n Xn

0 0 0 ... 0 Xn+1 Xn+1

gnk−1

pn−1
k−1

gn−1
k−1 g3k−1 g2k−1

pn−2
k−1

g1k−1

p0k−1
fk−1

gnk gn−1
k g3k g2k g1k

fk

fn−1

gnn gn−1
n g3n g2n g1n

fn
fn

https://doi.org/10.28919/ejma.2021.1.4
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Since fkfk−1 = 0 and g1
k is a weak kernel of fk, there exists a morphism p0

k−1 : Xk−1 −→ Y 1
k

such that fk−1 = g1
kp

0
k−1. Note that the dotted morphisms in the diagram are obtained by

taking n-pullback of the complex

0 −→ Y n
k

gnk−→ Y n−1
k

gn−1
k−→ ...

g3k−→ Y 2
k

g2k−→ Y 1
k

along p0
k−1. It is easy to see that for every 1 ≤ k ≤ n the induced morphism[

p0
k−1 g2

k+1

]
: Xk−1 ⊕ Y 2

k −→ Y 1
k

in the above diagram is an epimorphism and hence the diagram is both an n-pullback diagram
and an n-pushout diagram. Now all required properties are followed from basic properties of
n-pullback and n-pushout. Now assume that for every k[

p0
k g2

k+1

]
: Xk ⊕ Y 2

k+1 −→ Y 1
k+1

is an epimorphism. We show that the complex X is a right n-exact sequence. It is clear that
fn is an epimorphism. Let u : Xk+1 −→M be a morphism such that ufk = 0. Since[

p0
k g2

k+1

]
: Xk ⊕ Y 2

k+1 −→ Y 1
k+1

is an epimorphism, ug1
k+1 = 0. By assumption

0 −→ (Y 1
k+2,M) −→ (Xk+1 ⊕ Y 2

k+2,M) −→ (y1
k+1 ⊕ Y 3

k+2,M)

is exact and so there is a morphism v : Y 1 ⊕ k + 2 −→M such that u = vp0
k+1 and vg2

k+2 = 0.
Since g1

k+2 is a weak cokernel of g2
k+2 there is a morphism w : Xk+2 −→M such that v = wg1

k+2.
Now it is easy to see that u = wfk+1 and hence fk+1 is a weak cokernel of fk. Then the complex
X is a right n-exact sequence. �

4. n-abelian category

Remark 4.1. Let C be an n-abelian category. An immediate consequence of axioms (A1) and
(A2) (resp. (A2op)) is that every monomorphism (resp. epimorphism) in C appears as the
leftmost (resp. rightmost) morphism in some n-exact sequence.

Note that 1-abelian categories are precisely abelian categories in the usual sense. It is easy
to see that abelian categories are idempotent complete; thus, if n = 1, then axiom (A0) in
Definition 3.1 is redundant. However, if n ≥ 2, then axiom (A0) is independent from the
remaining axioms as shown by the following example.

Example 4.2. Let n ≥ 2 and K be a field. Consider the full subcategory ν of mod K given by
the finite dimensional K-vector spaces of dimension different from 1. Then, ν is not idempotent
complete but it satisfies axioms (A1), (A2) and (A2op).

Proof. Firstly, note that ν is an additive subcategory of mod K. The fact that ν is not
idempotent complete is obvious (consider the idempotent 0⊕ 1K : K2 −→ K2 whose kernel is
one-dimensional, for example). Let us show that ν satisfies axiom (A1). Indeed, let f : V −→ W

be a morphism in ν . If cokernel f has dimension different from 1, then

V W Cokerf 0 ... 0

https://doi.org/10.28919/ejma.2021.1.4
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gives an n-cokernel of f in ν. If cokernel f has dimension 1, then we can construct an n-cokernel
of f in ν by a commutative diagram

V W K3 K2 0 ... 0

Cokerf

f

where Cokerf −→ K3 −→ K2 is a kernel-cokernel pair. We can construct an n-kernel of f in a
dual manner. This shows that ν satisfies axiom (A1). That ν satisfies axioms (A2) and (A2op)

follows from Proposition 2.10 since contractible complexes with n + 2 terms are in particular
n-exact sequences by Proposition 2.9. �

Lemma 4.3. Let C be an idempotent complete additive category and suppose that we are given
a sequence of morphisms in C of the form

A
f−→ B

g−→ C
h−→ D

If g is a weak cokernel of f , and h is both a split epimorphism and a cokernel of g, then f

admits a cokernel in C.

Proof. Since h is a split epimorphism there exists a morphism i : D −→ C such that ih = 1D.
It follows that the morphism e := 1C − hi is idempotent. Since the category C is idempotent
complete, there exists an object E ∈ C and morphisms r : C −→ E and s : E −→ C such that
sr = 1E and rs = e. Note that this implies that r is an epimorphism and sh = 0 for we have

r(sh) = (1− hi)h = h− h = 0.

We claim that gr is a cokernel of f . Indeed, let u : B −→ B′ be a morphism such that fu = 0.
Since g is a weak cokernel of f there exists a morphism v : C −→ B′ such that u = gv. It
follows that

u = gv = g(1− hi)v = (gr)(sv).

This shows that gr is a weak cokernel of f . It remains to show that gr is an epimorphism. For
this, let w : E −→ E ′ be a morphism such that (gr)w = 0. Since h is a cokernel of g there
exists a morphism x : D −→ E ′ such that rw = hx. It follows that

w = (sr)w = s(hx) = 0.

This shows that gr is an epimorphism. Therefore gr is a cokernel of f . �

Proposition 4.4. Let M be an additive category which satisfies axioms (A0) and (A1) in
Definition 3.1, and let X a complex in Chn−1(C). If for all 1 ≤ k ≤ n− 1 the morphism dk is
a weak cokernel of dk−1, then dn−1 admits a cokernel inM.

Proof. If n = 1, then the result follows trivially from axiom (A1) in Definition 3.1. Hence we
may assume that n ≥ 2. By axiom (A1) in Definition 3.1 there exists an n-cokernel

https://doi.org/10.28919/ejma.2021.1.4
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(dk : Xk −→ Xk+1|n ≤ k ≤ 2n− 1)

of dn−1. Using axiom (A1) in Definition 3.1 again together with the factorization property of
weak cokernels, we obtain a commutative diagram

X0 X1 X2 ... Xn Xn+1 Xn+2 ... X2n

Y 0 Y 1 Y 2 ... Y n Y n+1 0 ... 0

X0 X1 X2 ... Xn Xn+1 Xn+2 ... X2n

d0 d1

f2

d2 dn−1

fn

dn dn+1

fn+1

dn+2 d2n−1

g2 gn gn+1

d0 d1 d2 dn−1 dn dn+1 dn+2 d2n−1

in which the middle row gives an n-cokernel of d0. The Comparison Lemma 2.8 implies that
there exists a morphism h : X2n −→ X2n−1 such that hd2n−1 = 1. Hence we may apply Lemma
4.3 and reduce the length of the n-cokernel of dn−1 by one morphism. Proceeding inductively,
we deduce that dn−1 has a cokernel inM. �

The importance of axiom (A0) in Definition 3.1 becomes apparent in the following result,
which asserts that n-abelian categories have n-pushout diagrams and n-pullback diagrams.

Theorem 4.5. (Existence of n-pushout diagrams). Let M be an additive category which sat-
isfies axioms (A0) and (A1) in Definition 3.1. Let X a complex in Chn−1(C), and a morphism
f : X0 −→ Y 0. Then, the following statements hold:
(i) Then, there exists an n-pushout diagram

X0 X1 X2 ... Xn−1 Xn

Y 0 Y 1 Y 2 ... Y n−1 Y n

(ii) Suppose, moreover, thatM is an n-abelian category. If d0
X is a monomorphism, then d0

Y is
a monomorphism.

Proof.
(i) We shall construct the complex Y inductively. Set f 0 := f and

d−1
c =

[
−d0

X

f 0

]
: X0 −→ X1 ⊕ Y 0

Let 0 ≤ k ≤ n − 2 and suppose that for each l ≤ k we have constructed an object Y l and
morphisms f l : X l −→ Y l and dl−1

Y : Y l−1 −→ Y l such that dl−2
C dl−1

C = 0 where

dl−1
c :=

[
−dlX 0

f l dl−1
Y

]
: X l ⊕ Y l−1 −→ X l+1 ⊕ Y l

(compare with Definition 2.5 ). Then, by axiom (A1) in Definition 3.1 , the morphism dk−1
C has

a weak cokernel

gk :=
[
fk+1 dkY

]
: Xk+1 ⊕ Y k −→ Xk+2 ⊕ Y k+1.

https://doi.org/10.28919/ejma.2021.1.4
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We claim that

dkc :=

[
−dk+1

X 0

fk+1 dkY

]
: Xk+1 ⊕ Y k −→ Xk+2 ⊕ Y k+1

is also a weak cokernel of dk−1
C . Indeed, it is readily verified that dk−1

C dkC = 0. Let u :

Xk+1 ⊕ Y k −→ M be a morphism such that dk−1
C u = 0. Since gk is a weak cokernel of dk−1

C

, there exists a morphism v : Y k+1 −→ M such that u = gkv. It follows that the following
diagram is commutative:

Xk+1 ⊕ Y k Xk+2 ⊕ Y k+1

M

dkc

u

[
0 v

]

This shows that dkC is a weak cokernel of dk−1
C . Finally, Proposition 4.4 implies that the

morphism dn−2
C admits a cokernel dn−1

C : Xn ⊕ Y n−1 −→ Y n.
This shows that the tuple (d0

C , d
1
C , ..., d

n−1
C ) is a weak cokernel of d−1

C . The existence of the
required commutative diagram follows from the fact that C is a complex.
(ii) Finally, suppose that M is n-abelian and d0

X is a monomorphism. Note that this implies
that d−1

C is also a monomorphism. Then, axiom (A2) in Definition 3.1 implies that the C is
an n-exact sequence. In order to show that d0

Y is a monomorphism, let u : M −→ Y 0 be a
morphism such that ud0

Y = 0. It follows that the composition

M

0

u


−−→ X1 ⊕ Y 0

−d1
X 0

f 1 d0
Y


−−−−−−−−→ X2 ⊕ Y 1

vanishes. Given that d−1
C is a kernel of d0

C , there exists a morphism v : M −→ X0 such that
vd0

X = 0 and vf 0 = u. Since d0
X is a monomorphism, we have u = 0. This shows that d0

Y is a
monomorphism. �

Theorem 4.6. Let C be an additive category and n a positive integer. Then, the n-abelian
categories in which every n-exact sequence is contractible are precisely the semisimple categories.

Proof. Suppose that C is a semisimple category. We only show that C is idempotent complete.
It is straightforward to verify that C satisfies the remaining axioms of n-abelian categories, the
fact that every n-exact sequence in C is contractible follows immediately from Proposition 2.10.
Let us show then that C is idempotent complete. Let e : A −→ A be an idempotent in C. Since
C is semisimple, e factors as e = pi where p : A −→ B is a split epimorphism and i : B −→ A

is a split monomorphism.
We claim that ip = 1B. Indeed, let h : A −→ B be a morphism such that ih = 1B. Given

that e2 = e we have

p = p(ih) = eh = e2h = (pipi)h = p(ip)

Since p is an epimorphism we have ip = 1B as claimed. This shows that C is idempotent
complete.
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Conversely, suppose that C is an n-abelian category in which every n-exact sequence is
contractible and let f : A −→ B be a morphism in C. We claim that f admits both a kernel
and a cokernel in C. Indeed, by axiom (A1) in Definition 3.1 there exists an n-cokernel (f 1, ...fn)

of f . By hypothesis, the epimorphism fn must split. Then, Lemma 4.3 implies that fn−2 has a
cokernel in C. By applying this argument inductively we deduce that f admits a cokernel in C.
By duality, f also admits a kernel in C. The remaining part of the proof is classical, compare
for example with the proof of Proposition 2.12.

We need to show that f factors as f = pi where p is a split epimorphism and i is a split
monomorphism. Given that f has both a kernel and a cokernel in C, is easy to construct a
commutative diagram

K A B C

J I

i f

p′

p

g

i′

where i is a kernel of f , and p is a cokernel of f , and the sequences K −→ A −→ J and
I −→ B −→ C are kernel-cokernel pairs. We claim that g is an isomorphism, for which it is
enough to show that is both a monomorphism and an epimorphism as all such morphisms split
by hypothesis. By duality we only need to show that g is an epimorphism.

Let h : I −→ I ′ be a morphism such that gh = 0. Firstly, by Theorem 4.5 there exists a
commutative diagram

I B C

I ′ B′

i′

h

p

h′

i′′

where i′′ is a monomorphism. Secondly, we claim that fh′ = 0. Indeed, we have

fh′ = (p′gi′)h′ = p′(gh)i′′ = 0

Therefore, since p is a cokernel of f , there exists a morphism j : C −→ B′ such that pj = h′.
It follows that

hi′′ = i′h′ = i′(pj) = 0

Finally, since i′′ is a monomorphism, we have h = 0. This shows that g is an epimorphism. �

Corollary 4.7. Let m and n be two distinct positive integers and C an additive category. If C
is both m-abelian and n-abelian, then C is a semisimple category.

Proof. Without loss of generality we may assume that m < n. By Theorem 4.6 and Proposition
2.10 it is enough to show that every monomorphism in C splits. Let f 0 : X0 −→ X1 be a
monomorphism in C and let (f 1, ..., fn) be an n-cokernel of f 0, and (g1, ..., gm) be an m-cokernel
of f 0. It follows that there exists a commutative diagram

https://doi.org/10.28919/ejma.2021.1.4
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X0 X1 X2 ... Xm+1 Xm+2 ... Xn+1

Y 0 Y 1 Y 2 ... Y m+1 0 0 0

X0 X1 X2 ... Xm+1 Xm+2 ... Xn+1

f0 f1 f2 fm fm+1 fm+2 fn

g0 g1 g2 gm

f0 f1 f2 fm fm+1 fm+2 fn

By the Lemma 2.8 there exists a morphism h : Xn+1 −→ Xn such that hfn = 1. Thus fn is
a split epimorphism. Then, as (f 1, ..., fn) is an n-exact sequence by axiom (A2) in Definition
3.1, the dual of Proposition 2.10 implies that f 0 is a split monomorphism. �

Proposition 4.8. Let C be an additive category which satisfies axioms (A0) and (A1) in Def-
inition 3.1, let X be a complex in Chn−1(C) such that the morphism dkX is a weak cokernel of
dk−1
X for 1 ≤ k ≤ n − 1. Let f 0 : X0 −→ Y 0 be a morphism. Then there exists a cokernel
dnX : Xn −→ Xn+1 of dn−1

X such that (d1
X , ..., d

n
X) is an n-cokernel of d0

X , and for any n-pushout
diagram

X0 X1 ... Xn−1 Xn Xn+1

Y 0 Y 1 ... Y n−1 Y n Y n+1

d0X

f0

d1X

f1 fn−1

dn−1
X

fn

dnX

d0Y d1Y dn−1
Y dnY

of (d0
X , ..., d

n−1
X ) along f 0, there exists a cokernel dnY : Y n −→ Xn+1 of dn−1

Y such that (d1
Y , ..., d

n
X)

is an n-cokernel of d0
Y and dnX = dnY f

n. Moreover, if d0
X is a monomorphism, both rows are

n-exact sequences.

Proof. The existence of dnX : Xn −→ Xn+1 of dn−1
X is immediately by Lemma 4.3. Since dn−1

C

is a cokernel of dn−2
C , there exists an unique morphism dnY : Y n −→ Xn+1 such that dnX = dnY f

n

and dnY d
n−1
Y = 0. Since dnX is an epimorphism so is dnY . It remains to show that dnY is a cokernel

of dn−1
Y . Let u : Y n −→M be a morphism such that udn−1

Y = 0. Then

(ufn)dn−1
X = u(dn−1

Y fn−1) = 0.

Since dnX is a cokernel of dn−1
X , there exists a morphism v : Xn+1 −→M such that ufn = vdnX .

It follows that

ufn = vdnX = (vdnY )fn, udn−1
Y = 0 = (vdnY )dn−1

Y

Since dn−1
C is a cokernel of dn−2

C , u = vdnY . This shows that the epimorphism dnY is a cokernel
of dn−1

Y .
We show that the morphism dk+1

Y is a weak cokernel of dkY for 2 ≤ k ≤ n, this shows that
(d1
Y , ..., d

n
Y ) is an n-cokernel of d0

Y . Indeed, let u : Y k+1 −→M be a morphism such that udkY =

0. Then ufk+1dkX = udkY f
k = 0, there exists vk+2 : Xk+2 −→ M such that ufk+1 = vk+2dk+1

X

since dk+1
X is a weak cokernel of dkX . Then there exists morphisms vk+3 : Xk+2 −→ M and

https://doi.org/10.28919/ejma.2021.1.4
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uk+2 : Y k+2 −→ M (we set Xn+1 = 0) such that uk+2dk+1
Y = u since dk+1

C is a weak cokernel of
dkC . This shows that dk+1

Y is a weak cokernel of dkY .
Moreover, if d0

X is a monomorphism, by Theorem(ii) 4.5 , n-pushout preserve monorphism,
then d0

Y is a monomorphism. By axiom (A2) in Definition 3.1, both the two rows are n-exact
sequences. �
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