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WEAK AND STRONG CONVERGENCE THEOREMS FOR FIXED POINTS
OF GENERALIZED α-NONEXPANSIVE MAPPINGS WITH AN

APPLICATION

UNWANA E. UDOFIA1, AUSTINE E. OFEM2,∗, AND DONATUS I. IGBOKWE3

Abstract. The purpose of this article is to establish weak and strong convergence results of AI
iterative scheme for fixed points of generalized α-nonexpanisve mappings in uniformly convex
Banach spaces. Furthermore, we carry out a numerical experiment to compare the convergence
of AI iterative scheme with several prominent iterative schemes. Finally, we use AI iteration
process to find the unique solution of a functional Volterra-Fredholm integral equation with
deviating argument in Banach spaces. The results of this paper are new and extend several
results in the literature.

1. Introduction

Let K be a nonempty closed convex subset of a Banach space B. By a fixed point of a self
mapping V : K → K, we mean a point ψ ∈ K which satisfies V ψ = ψ. Throughout this paper,
F (V ) will denote the set of all fixed point of V , < will stand for the set of real numbers. The
map V is called a contraction if a constant δ ∈ (0, 1) exists such that ‖V ψ − V η‖ ≤ δ‖ψ − η‖,
for all ψ, η ∈ K. When δ = 1, then V is a nonexpansive mapping (i.e., ‖V ψ−V η‖ ≤ ‖ψ− η‖).
The mapping V is said to be quasi-nonexpansive if F (V ) 6= ∅ such that ‖V ψ − z‖ ≤ ‖ψ − z‖,
for all z ∈ F (V ) and ψ ∈ K.

Consider a fixed point iteration which is given by

ψs+1 = V ψs, ∀ s ≥ 1.(1.1)

The iterative method is known as Picard iteration or the method of successive substitution.
In 1922, a Polish mathematician by name S. Banach in [7] established the metric fixed point

theorem for contraction mappings. The theorem is also known as Banach contraction principle.
In the case where we have a nonexpansive mapping, it is well known that the Banach contraction
principle does not hold since the Picard iteration method fails to converge to the fixed point
of nonexpansive mappings, even when the existence of a fixed point of V is guaranteed. For
example, let V : [0, 1] → [0, 1] be defined by V (ψ) = 1 − ψ, for all ψ ∈ [0, 1]. Then it is clear
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that V is a nonexpansive mapping with a unique fixed point as 1
2
. If we take an initial value

ψ1 6= 1
2
, then successive iterations of V yield the sequence {1− ψ1, ψ1, 1− ψ1, ...}.

In 1965, F. E. Browder, D. Gohde and W. A. Kirk [10,16,24] showed that every nonexpansive
mapping defined on a bounded closed convex subset of a uniformly convex Banach space (or
more generally reflexive Banach space having normal structure) has at least a fixed point.
Their works were the foundation of the fixed point theory for nonexpansive mappings which
illustrated the primary role of the geometry of Banach spaces in this axis of research. It was the
birth of an interesting domain of nonlinear functional analysis which attracted the attention of
many mathematicians. For more details, see [4, 8, 13–15].

Motivated by the above results, several authors have established different generalizations of
nonexpansive mappings.

In [38], Suzuki showed that the class of Suzuki generalized nonexpansive mapping is more
general than the class of nonexpansive mapping and obtain some fixed points and convergence
theorems. Suzuki generalized nonexpansive mapping is also known as mapping satisfying con-
dition (C).

Definition 1.1. A mapping V : K → K is said to be a Suzuki generalized nonexpansive
mapping if for all ψ, η ∈ K, we have

1

2
‖ψ − V ψ‖ ≤ ‖ψ − η‖ =⇒ ‖V ψ − V η‖ ≤ ‖ψ − η‖.

The class of α-nonexpansive mapping was introduced in 2011 by Aoyama and Kohsaka [6]
as generalization of nonexpansive mapping and obtained some convergence results.

Definition 1.2. A mapping V : K → K is said to be α-nonexpansive if there exists α ∈ [0, 1)

such that

‖V ψ − V η‖2 ≤ α‖V ψ − η‖2 + α‖V η − ψ‖2 + (1− 2α)‖ψ − η‖2,

for all ψ, η ∈ K.

It is worthy to note that nonexpansive mappings are continuous on their domains, but Suzuki-
type generalized nonexpansivemappings and α-nonexpansivemappings need not be continuous
(see [38]). Clearly, every nonexpansive mapping is an α-nonexpansive mapping with α = 0

(i.e., 0-nonexpansive) and every α-nonexpansive mapping with a nonempty fixed point set is
quasi-nonexpansive.

In [31], Pant and Shukla introduced a more general class of nonexpansive mappings in Ba-
nach spaces known as generalized α-nonexpansive mapping which contains the class of Suzuki
generalized nonexpansive mappings.

Definition 1.3. A mapping V : K → K is said to be generalized α-nonexpansive if there exists
α ∈ [0, 1) such that

1

2
‖ψ − V ψ‖ ≤ ‖ψ − η‖ implies

‖V ψ − V η‖ ≤ α‖V ψ − η‖+ α‖V η − ψ‖+ (1− 2α)‖ψ − η‖

for all ψ, η ∈ K.
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This class of mapping has recently received massive attentions from several authors (see for
example, [20,31,34,45] and the references therein).

In the last 2 decades, so many authors have introduced new iteration processes to approximate
the fixed points of various classes of mappings. Some of these iteration processes are: Mann
iteration [26], Ishikawa iteration [21], Noor iteration [30], Argawal et al. iteration [3], Abbas and
Nazir iteration [2], SP iteration [33], S* iteration [22], CR iteration [12], Normal-S iteration [35],
Picard-S iteration [18], Thakur iteration [40], Thakur New iteration [41], M iteration [43],
Garodia and Uddin [17], M* iteration [42] and so on.

In 2007, the following iterative scheme which is known as S iteration was introduced by
Argawal et al. [3]: 

ψ0 ∈ K,
ηs = (1− δs)ψs + δsV ψs,

ψs+1 = (1− βs)V ψs + βsV ηs,

∀s ≥ 1.(1.2)

where {δs} and {βs} are sequences in (0,1).
In 2013, Khan [23] introduced the following iterative scheme which is known as normal-S

iteration scheme: 
ψ0 ∈ K,
ηs = (1− βs)ψs + βsV ψs,

ψs+1 = V ηs,

∀s ≥ 1.(1.3)

where {βs} is sequence in (0,1). The author showed that normal-S iteration process (1.3)
converges at a rate faster than all of Picard, Mann, Ishikawa iteration processes for contraction
mappings.

In 2014, the following iterative method known as Picard-S iteration was introduced by Gursoy
and Karakaya [18]: 

ψ0 ∈ K,
ks = (1− δs)ψs + δsV ψs,

ηs = (1− βs)V ψs + βsV ks,

ψs+1 = V ηs,

∀s ≥ 1.(1.4)

where {δs} and {βs} are sequences in (0,1). The authors showed with the aid of an example that
Picard-S iteration process (1.4) converges at a rate faster than all of Picard, Mann, Ishikawa,
Noor, SP, CR, S, S*, Abbas and Nazir, Normal-S and Two-Step Mann iteration processes for
contraction mappings.

In 2016, Thakur et al. [41] introduced the following three steps iterative scheme:
ψ0 ∈ K,
ks = (1− δs)ψs + δsV ψs,

ηs = V ((1− βs)ψs + βsks),

ψs+1 = V ηs,

∀s ≥ 1.(1.5)

where {δs} and {βs} are sequences in (0,1). With the help of numerical example they proved
that (1.5) is faster than Picard, Mann, Ishikawa, Agarwal, Noor and Abbas iteration process
for suzuki generalized nonexpansive mappings.
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In 2018, Ullah and Arshad [43] introduced the following three steps iterative scheme known
as M iteration process: 

ψ0 ∈ K,
ks = (1− βn)ψs + βsV ψs,

ηs = V ks,

ψs+1 = V ηs,

∀s ≥ 1;(1.6)

where {βs} is a sequence in (0,1). Numerically, they showed that M iteration process (1.6)
converges faster than S iteration process (1.2) and Picard-S iteration process (1.4) for Suzuki
generalized nonexpansive mapping. Also, they noted that the speed of convergence of Picard-S
iteration process (1.4) and Thakur New iteration (1.5) are almost same.

Recently, Ullah [45] showed that M iteration process (1.6) enjoyed better rate of convergence
than Man, Ishikawa, Picard-S, S iteration processes for generalized α-nonexpansive mappings.

In 2020, Ofem and Igbokwe [32] introduced the following four steps iterative method known
as AI iteration process: 

ψ0 ∈ K,
gs = (1− βs)ψs + βsV ψs,

ks = V gs,

ηs = V ks,

ψs+1 = V ηs,

∀s ≥ 1.(1.7)

where {βs} is a sequence in (0,1).
The authors proved analytically and numerically that AI iterative method (1.7) has a better

speed of convergence than M, Picard-S, Normal-S and Garodia and Uddin iteration processes for
contraction mappings. It should be noted here that M iteration process (1.6) and AI iteration
process (1.7) are independent.

Motivated by the above results, in this paper, we extend the result of Ofem and Igbokwe [32]
from contraction mappings to generalized α-nonexpansive mappings. We provide an example of
a generalized α-nonexpansive mapping and carry out a numerical experiment with the provided
example to show that AI iteration process (1.7) converges faster than a number of existing
iterative schemes. Finally, we use AI iteration process (1.7) to find the unique solution of a
functional Volterra-Fredholm integral equation with deviating argument in Banach spaces.

2. Preliminaries

The following definitions, propositions and lemmas will be useful in proving our main results.

Definition 2.1. A Banach space B is said to be uniformly convex if for each ε ∈ (0, 2], there
exists δ > 0 such that for ψ, η ∈ B satisfying ‖ψ‖ ≤ 1, ‖η‖ ≤ 1 and ‖ψ − η‖ > ε, we have∥∥ψ+η

2

∥∥ < 1− δ.

Definition 2.2. A Banach space B is said to satisfy Opial’s condition if for any sequence {ψs}
in B which converges weakly to ψ ∈ B implies

lim sup
s→∞

‖ψs − η‖ < lim sup
s→∞

‖ψs − η‖, ∀ η ∈ B with η 6= ψ.

https://doi.org/10.28919/ejma.2021.1.3
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Definition 2.3. Let {ψs} be a bounded sequence in B. For ψ ∈ K ⊂ B, we put

r(ψ, {ψs}) = lim sup
s→∞

‖ψs − ψ‖.

The asymptotic radius of {ψs} relative to K is defined by

r(K, {ψs}) = inf{r(ψ, {ψs}) : ψ ∈ K}.

The asymptotic center of {ψs} relative to K is given as:

A(K, {ψs}) = {ψ ∈: r(ψ, {ψs}) = r(K, {ψs})}.

In a uniformly convex Banach space, it is well known that A(K, {ψs}) consist of exactly one
point.

Definition 2.4. [37] A mapping V : K → K is said to satisfy condition (I) if a nondecreasing
function f : [0,∞) → [0,∞) exists with f(0) = 0 and for all r > 0 then f(r) > 0 such that
‖ψ − V ψ‖ ≥ f(d(ψ, F (V )))) for all ψ ∈ K, where d(ψ, F (V )) = infz∈F (V ) ‖ψ − z‖.

Proposition 2.5. [31] Let K be a nonempty subset of a Banach space B. Suppose V : K → K

is any mapping. Then

(i) If V is a Suzuki generalized nonexpansive mapping, it follows that V is a generalized
α-nonexpansive mapping.

(ii) Every generalized α-nonexpansive mapping with a nonempty fixed point set is quasi-
nonexpansive mapping.

(ii) If V is a generalized α-nonexpansive mapping, then F (V ) is closed. Moreover, if B is
strictly convex and K is convex, then F (V ) is also convex.

(iv) If V is a generalized α-nonexpansive mapping, then the following inequality holds:

‖ψ − V η‖ ≤
(

3 + α

1− α

)
‖ψ − V ψ‖+ ‖ψ − η‖, ∀ ψ, η ∈ K.

Lemma 2.6. [31] Let V be a self mapping on a subset K of a Banach space B which satisfies
Opial’s condition. Suppose V is a generalized α-nonexpansive mapping. If {ψs} converges
weakly to z and lim

s→∞
‖V ψs − ψs‖ = 0, then V z = z. That is, I − V is demiclosed at zero.

Lemma 2.7. [36] Suppose B is a uniformly convex Banach space and {ιs} is any sequence
satisfying 0 < p ≤ ιs ≤ q < 1 for all s ≥ 1. Suppose {ψs} and {ηs} are any sequences of B
such that lim sup

s→∞
‖ψs‖ ≤ x, lim sup

s→∞
‖ηs‖ ≤ x and lim sup

s→∞
‖ιsψs + (1− ιs)ηs‖ = x hold for some

x ≥ 0. Then lim
s→∞
‖ψs − ηs‖ = 0.

3. Main Results

In this section, we prove the weak and strong convergence of AI iteration algorithm (1.7) for
generalized α-nonexpansive mappings in the framework of uniformly convex Banach spaces.

Firstly, we state and prove the following lemmas which will be useful in obtaining our main
results.

Lemma 3.1. Let B be a Banach space and K be a closed convex subset of B. Let V : K → K

be a generalized α-nonexpansive mapping with F (V ) 6= ∅. If {ψs} is the iterative sequence
defined by (1.7), then lim

s→∞
‖ψs − z‖ exists for all z ∈ F (V ).

https://doi.org/10.28919/ejma.2021.1.3
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Proof. Let z ∈ F (V ). By Proposition 2.5(ii), we know that every generalized α-nonexpansive
mapping with F (G) 6= ∅ is quasi-nonexpansive mapping. So from (1.7), we have

‖gs − z‖ = ‖(1− βs)ψs + βsV ψs − z‖

≤ (1− βs)‖ψs − z‖+ βs‖V ψs − z‖

≤ (1− βs)‖ψs − z‖+ βs‖ψs − z‖

= ‖ψs − z‖.(3.1)

Using (1.7) and (3.1), we obtain

‖ks − z‖ = ‖V gn − z‖

= ‖gs − z‖ ≤ ‖ψs − z‖.(3.2)

Again, using (1.7) and (3.2), we get

‖ηs − z‖ = ‖V gs − z‖

≤ ‖gs − z‖

≤ ‖ψs − z‖.(3.3)

Lastly, from (1.7) and (3.3), we have

‖ψs+1 − z‖ = ‖V ηs − z‖

≤ ‖ηs − z‖

≤ ‖ψs − z‖.(3.4)

This implies that {‖ψs−z‖} is bounded and nondecreasing for all z ∈ F (V ). Hence, lim
s→∞
‖ψs−z‖

exists. �

Lemma 3.2. Let B be a uniformly convex Banach space and K be a nonempty closed convex
subset of B. Let V : K → K be a generalized α–nonexpansive mapping. Suppose {ψs} is
the iterative sequence defined by (1.7). Then, F (V ) 6= ∅ if and only if {ψs} is bounded and
lim
s→∞
‖V ψs − ψs‖ = 0.

Proof. Suppose F (V ) 6= ∅ and let z ∈ F (V ). Then, by Lemma 4.1, lim
s→∞
‖ψs − z‖ exists and

{ψs} is bounded. Put

lim
s→∞
‖ψs − z‖ = x.(3.5)

From (3.4) and (3.5), we obtain

lim sup
s→∞

‖gs − z‖ ≤ lim sup
s→∞

‖ψs − z‖ = x.(3.6)

From Proposition 2.5(ii), we know that every generalized α–nonexpansive mapping with F (V ) 6=
∅ is quasi-nonexpansive mapping. So that we have

lim sup
s→∞

‖V ψs − z‖ ≤ lim sup
s→∞

‖ψs − z‖ = x.(3.7)

https://doi.org/10.28919/ejma.2021.1.3


Eur. J. Math. Appl. | https://doi.org/10.28919/ejma.2021.1.3 7

Again, using (1.7), we get

‖ψs+1 − z‖ = ‖V ηs − z‖

≤ ‖ηs − z‖

= ‖V ks − z‖

≤ ‖ks − z‖

= ‖V gs − z‖

≤ ‖gs − z‖.

Therefore, from (3.5), we obtain

x ≤ lim inf
s→∞

‖gs − z‖.(3.8)

From (3.6) and (3.8) we obtain

x = lim
s→∞
‖gn − z‖

= lim
s→∞
‖(1− βs)ψs + βsV ψs − z‖

= lim
s→∞
‖(1− βs)(ψs − z) + βs(V ψs − z)‖

= lim
s→∞
‖βs(V ψs − z) + (1− βs)(ψs − z)‖.(3.9)

From (3.5), (3.7), (3.9) and Lemma 2.14, we obtain

lim
s→∞
‖V ψs − ψs‖ = 0.(3.10)

Conversely, assume that {ψs} is bounded and lim
s→∞
‖V ψs − ψs‖ = 0. Let z ∈ A(K, {ψs}), by

definition 2.3 and Proposition 2.5(iv), we have

(V z, {ψs}) = lim sup
s→∞

‖ψs − V z‖

≤ lim sup
s→∞

(
(3 + α)

(1− α)
‖V ψs − ψs‖+ ‖ψs − z‖

)
= lim sup

s→∞
‖ψs − z‖

= r(z, {ψs}).(3.11)

This implies that z ∈ A(K, {ψs}). Since B is uniformly convex, A(K, {ψs}) is singleton, thus
we have V z = z. �

Theorem 3.3. Let B, K, V be as in Lemma 4.2. Suppose tat B satisfies Opial’s condition
and F (V ) 6= ∅. Then, the sequence {ψs} defined by (1.7) converges weakly to a fixed point of
V .

Proof. Let z ∈ F (V ), then by Lemma 4.1, we have lim
s→∞
‖ψs−z‖ exists. Now we show that {ψs}

has weak sequential limit in F (V ). Let ψ and η be weak limits of the subsequences {ψsj} and
{ηsk} of {ψs} respectively. By Lemma 4.2, we have lim

s→∞
‖V ψs − ψs‖ = 0 and from Lemma 2.6,

I − V is demiclosed at zero. It follows that (I − V )ψ = 0 implies ψ = V ψ, similarly V η = η.

https://doi.org/10.28919/ejma.2021.1.3
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Next we show uniqueness. Suppose ψ 6= η, then by Opial’s property, we obtain

lim
s→∞
‖ψs − ψ‖ = lim

sj→∞
‖ψsj − ψ‖

< lim
sj→∞

‖ψsj − η‖

= lim
s→∞
‖ψs − η‖

= lim
sk→∞

‖ψsk − η‖

< lim
sk→∞

‖ψsk − ψ‖

= lim
s→∞
‖ψs − ψ‖,(3.12)

which is a contradiction, so ψ = η. Hence, {ψs} converges weakly to a fixed point of V . �

Theorem 3.4. Let B, K, V be as in Lemma 4.2. Then, the {ψs} defined by (1.7) converges
strongly to a point of F (V ) if and only if lim inf

s→∞
d(ψs, F (V )) = 0, where d(ψs, F (V )) = inf{‖ψ−

z‖ : z ∈ F (V )}.

Proof. Necessity is obvious. Assume that lim inf
s→∞

d(ψs, F (V )) = 0. From Lemma 4.1, we have
lim
s→∞
‖ψs−z‖ exists for all z ∈ F (V ), it follows that lim inf

s→∞
d(ψs, F (V )) exists. But by hypothesis,

lim inf
s→∞

d(ψs, F (V )) = 0, thus lim
s→∞

d(ψs, F (V )) = 0. Next we prove that {ψs} is a Cauchy
sequence in K. Since lim inf

s→∞
d(ψs, F (V )) = 0, then given ε > 0, there exists s0 ∈ N such that,

for all s, n ≥ s0, we have

d(ψs, F (V )) ≤ ε

2
,

d(ψn, F (V )) ≤ ε

2
.

Thus, we have

‖ψs − ψn‖ ≤ ‖ψs − z‖+ ‖ψn − z‖

≤ d(ψs, F (V )) + d(ψn, F (V ))

≤ ε

2
+
ε

2
= ε.

Hence {ψs} is a Cauchy sequence in K. Since K is closed, therefore there exists a point ψ1 ∈ K
such that lim

s→∞
ψs = ψ1. Since lim

s→∞
d(ψs, F (V )) = 0, it implies that lim

s→∞
d(ψ1, F (V )) = 0.

Hence, ψ1 ∈ F (V ) since F (V ) closed. �

Theorem 3.5. Let B, K, V be as in Lemma 4.2. If V satisfies condition (I), then the sequence
{ψs} defined by (1.7) converges strongly to a fixed point of V .

Proof. We have shown in Lemma 4.2 that

lim
s→∞
‖V ψs − ψs‖ = 0.(3.13)

Using condition (I) in Definition 2.10 and (3.13), we get

lim
s→∞

f(d(ψs, F (V ))) ≤ lim
s→∞
‖V ψs − ψs‖ = 0,(3.14)

i.e., lim
s→∞

f(d(ψs, F (V ))) = 0. Since f : [0,∞) → [0,∞) is a nondecreasing function satisfying
f(0) = 0, f(r) > 0 for all r ∈ (0,∞), we have

lim
s→∞

d(ψs, F (V )) = 0.(3.15)

https://doi.org/10.28919/ejma.2021.1.3
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From Theorem 4.5, then sequence {ψs} converges strongly to a point of F (V ). �

4. Numerical experiment

In this section, we provide an example of a mapping which is a generalized α-nonexpansive,
but not Suzuki generalized nonexpansive mapping. With the aid of the example, we will prove
that our new iterative algorithm (1.7) outperform a number of iterative algorithms in the
existing literature in terms of speed of convergence.

Example 4.1. Let B = < with usual | · | and K = [0,∞). Let V : K → K be defined as:

V ψ =

{
0, if ψ ∈ [0, 3

4
),

2ψ
3
, if ψ ∈ [3

4
,∞).

Now, we show that V is a generalized α-nonexpansive mapping, but not Suzuki generalize.
For this, let ψ = 1

3
and η = 3

4
, then

1

2
|ψ − V ψ| = 1

6
<

5

12
= |ψ − η|.

But

|V ψ − V η| = 2η

3
=

1

2
>

5

12
= |ψ − η|.

Hence, V is not a Suzuki generalized nonexpansive mapping.
To show that V is a generalized α-nonexpansive mapping with α = 1

2
(i.e., generalized 1

2
-

nonexpansive), we consider the following possible cases:
Case (I): When ψ, η ∈ [0, 3

4
), we have

α‖V ψ − η‖+ α‖ψ − V η‖+ (1− 2α)|ψ − η‖ =
1

2
|T`− ζ|+ 1

2
|`− Tζ|

≥ 0 = |V ψ − V η|.

Case (II): When ψ, η ∈ [3
4
,∞), we obtain

α‖V ψ − η‖+ α‖ψ − V η‖+ (1− 2α)|ψ − η‖ =
1

2
|V ψ − η|+ 1

2
|ψ − V η|

=
1

2

∣∣∣∣2ψ3 − η
∣∣∣∣+

1

2

∣∣∣∣ψ − 2η

3

∣∣∣∣
≥ 1

2

∣∣∣∣(2ψ

3
− η
)

+

(
ψ − 2η

3

)∣∣∣∣
=

5

6
|ψ − η|

>
2

3
|ψ − η| = |V ψ − V η|.

Case (III): When ψ ∈ [3
4
,∞) and η ∈ [0, 3

4
), we get

α‖V ψ − η‖+ α‖ψ − V η‖+ (1− 2α)|ψ − η‖ =
1

2
|V ψ − η|+ 1

2
|ψ − V η|

=
1

2

∣∣∣∣2ψ3 − η
∣∣∣∣+

1

3
|ψ|

≥ 2

3
|ψ| = |V ψ − V η|.
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Hence, V is generalized α-nonexpansive mapping with α = 1
2
(i.e., generalized 1

2
-nonexpansive)

with F (V ) = {0}.
By using the above example, we will show that our new iteration process (1.7) converges faster

than S, Picard S, Tharkur, M and Normal S iteration processes. With the aid of MATLAB
(R2015a), we observed that Picard-S and Thakur iteration have almost the same speed of
convergence and we obtain the comparison Table 1 and Figure 1 for various iterative schemes
with control sequences δs = βs = 1

10
and initial guess ψ1 = 20.

Table 1. Comparison of speed of convergence of our new iterative scheme with
S, Picard-S, M and Normal S iterative schemes.

Step S Picard-S M Normal S AI
1 20.00000000 20.00000000 20.00000000 20.00000000 20.00000000
2 13.29660239 8.86440159 8.61952862 12.92929293 5.74635241
3 8.83998175 3.92888078 3.71481368 8.35833078 1.65102830
4 5.87708612 1.74135885 1.60099714 5.40336535 0.47436952
5 3.90726387 0.77180521 0.68999203 3.49308467 0.13629472
6 2.59766670 0.34207957 0.29737030 2.25815575 0.00000000
7 1.72700707 0.15161653 0.12815959 1.45981786 0.00000000
8 1.14816631 0.00000000 0.00000000 0.94372064 0.00000000
9 0.76333555 0.00000000 0.00000000 0.61008203 0.00000000
10 0.50748846 0.00000000 0.00000000 0.39439646 0.00000000
11 0.33739362 0.00000000 0.00000000 0.25496337 0.00000000
12 0.22430944 0.00000000 0.00000000 0.16482480 0.00000000
13 0.14912767 0.00000000 0.00000000 0.10655341 0.00000000

Iteration number s
2 4 6 8 10 12 14

Ite
ra

tio
n 

va
lu

es

0

2

4

6

8

10

12

14

16

18

20

AI Iteration
Picard S-Iteration
M Iteration
Normal S-Iteration
S-Iteration

Figure 1. Graph corresponding to Table1.

5. Application

Several problems which arise in mathematical physics, engineering, biology, economics and
etc., lead to mathematical models described by nonlinear integral equations (see [27] and the
references therein). In particular, Volterra-Fredholm integral equations arise from parabolic
boundary value problems, from the mathematical modeling of the spatio-temporal development
of an epidemic, and from various physical and biological models (see [29], [46]).
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In this section, we will use our new iterative method (1.7) to solve the following Volterra-
Fredholm integral equation which have been considered by Lungu and Rus [25]:

u(ψ, η) = g(ψ, η, h(u(ψ, η))) +

∫ ψ

0

∫ η

0

K(ψ, η,m, n, u(m,n))dmdn,(5.1)

for all ψ, η ∈ <+. Let Let (Ω, | · |) be a Banach space. Let τ > 0 and

Xτ = {u ∈ C(<2
+,Ω)|∃M(u) > 0 : |u(ψ, η)|e−τ(ψ+η) ≤M(u)}.

We now consider Bielecki’s norm on Xτ as follows:

‖u‖τ = sup
ψ,η∈<+

(
|u(ψ, η)|e−τ(ψ+η)

)
.

Obviously, (Xτ , || · ||τ ) is a Banach space (see [9]).
The following result which was given by Lungu and Rus [25] will be useful in proving our

main result.

Theorem 5.1. [25] Suppose the following conditions are fulfilled:

(V1) g ∈ C(<2
+ × Ω,Ω), K ∈ C(<4

+ × Ω,Ω);
(V2) h : Xτ → Xτ is such that

∃lh > 0 : |h(u(ψ, η))− h(v(ψ, η))| ≤ lH‖u− v‖ · eτ(ψ+η),

for all ψ, η ∈ <+ and u, v ∈ Xτ ;
(V3)

∃lg > 0 : |g(ψ, η, e1)− g(ψ, η, e2)| ≤ lg|e1 − e2|,

for all ψ, η ∈ <+ and e1, e2 ∈ Ω;
(V4)

∃lK(ψ, η,m, n) : |K(ψ, η,m, n, e1)−K(ψ, η,m, n, e1)| ≤ lK(ψ, η,m, n)|e1 − e2|,

for all ψ, η,m, n ∈ <+ and e1, e2 ∈ Ω;
(V5) lK ∈ C(<4

+,<+) and∫ ψ

0

∫ η

0

lK(ψ, η,m, n)eτ(ψ+η)dmdn ≤ leτ(ψ+η),

for all ψ, η ∈ <+;
(V6) lglh + l < 1.

Then, the equation (5.1) has a unique solution z ∈ Xτ and the sequence of successive approxi-
mations

us+1(ψ, η) = g(ψ, η, h(us(ψ, η))) +

∫ ψ

0

∫ η

0

K(ψ, η,m, n, us(m,n))dmdn,(5.2)

for all s ∈ N converges uniformly to z .

We now give our main result in this section.

Theorem 5.2. Let {ψs} be AI iterative method defined by (1.7) with sequence {βs} in [0,1]
such that

∑∞
s=0 βs = ∞. If all the conditions (V1) − (V6) in theorem 5.1 are satisfied, then

the equation (5.1) has a unique solution z in Xτ and the AI iterative sequence (1.7) converges
strongly to z.

https://doi.org/10.28919/ejma.2021.1.3
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Proof. Let {ψs} be an iterative sequence generated by AI iterative method (1.7) for the operator
A : Xτ → Xτ defined by

A(u(ψ, η)) = g(ψ, η, h(u(ψ, η))) +

∫ ψ

0

∫ η

0

K(ψ, η,m, n, u(m,n))dmdn.(5.3)

We will prove that ψs → 0 as s→∞. Using (1.7), we obtain

‖ψs+1 − z‖τ = sup
ψ,η∈<+

(|A(ηs(ψ, η))− A(z(ψ, η))|e−τ(ψ+η)).

Now,

|A(ηs(ψ, η))) − A(z(ψ, η))|

≤ |g(ψ, η, h(ηs(ψ, η)))− g(ψ, η, h(z(ψ, η)))|

+
∣∣∣∫ ψ

0

∫ η

0

K(ψ, η,m, n, ηs(m,n))dmdn

−
∫ ψ

0

∫ η

0

K(ψ, η,m, n, z(m,n))dmdn
∣∣∣

≤ lg|h(ηs(ψ, η))− h(z(ψ, η))|

+

∫ ψ

0

∫ η

0

|K(ψ, η,m, n, ηs(m,n))

−K(ψ, η,m, n, z(m,n))|dmdn

≤ lglh‖ηs − z‖τeτ(ψ+η)

+

∫ ψ

0

∫ η

0

lK(ψ, η,m, n)|ηs(m,n)− z(m,n)|dmds

≤ lglh‖ηs − z‖τeτ(ψ+η) + l‖ηs − z‖τeτ(ψ+η)

= (lglh + l)‖ηs − z‖τeτ(ψ+η).

Hence,

‖ψs+1 − z‖τ ≤ (lglh + l)‖ηs − z‖τ .(5.4)

Also,

‖ηs − z‖τ = sup
ψ,η∈<+

(|A(ks(ψ, η))− A(z(ψ, η))|e−τ(ψ+η)).

Now,

|A(ks(ψ, η))) − A(z(ψ, η))|

≤ |g(ψ, η, h(ks(ψ, η)))− g(ψ, η, h(z(ψ, η)))|

+
∣∣∣∫ ψ

0

∫ η

0

K(ψ, η,m, n, ks(m,n))dmdn

−
∫ ψ

0

∫ η

0

K(ψ, η,m, n, z(m,n))dmdn
∣∣∣

≤ lg|h(ks(ψ, η))− h(z(ψ, η))|

+

∫ ψ

0

∫ η

0

|K(ψ, η,m, n, ks(m,n))

−K(ψ, η,m, n, z(m,n))|dmdn
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≤ lglh‖ks − z‖τeτ(ψ+η)

+

∫ ψ

0

∫ η

0

lK(ψ, η,m, n)|ηs(m,n)− z(m,n)|dmds

≤ lglh‖ks − z‖τeτ(ψ+η) + l‖ks − z‖τeτ(ψ+η)

= (lglh + l)‖ks − z‖τeτ(ψ+η).

Hence,

‖ηs − z‖τ ≤ (lglh + l)‖ks − z‖τ .(5.5)

Putting (5.5) into (5.4), we get

‖ψs+1 − z‖τ ≤ (lglg + l)2‖ks − z‖τ .(5.6)

Similarly,

‖ks − z‖τ ≤ (lglh + l)‖gs − z‖τ .(5.7)

Putting (5.7) into (5.6), we get

‖ψs+1 − z‖τ ≤ (lglh + l)3‖gs − z‖τ .(5.8)

Again,

‖gs − z‖τ = ‖((1− βs)ψs + βsAψs)− z‖

= ‖(1− βs)(ψs − z) + βs(Aψs − z)‖

≤ (1− βs)‖ψs − z‖+ βs‖Aψs − z‖.(5.9)

Now,

‖Aψs − Az‖τ = sup
ψ,η∈<+

(|A(ψs(ψ, η))− A(z(ψ, η))|e−τ(ψ+η)),

and

|A(ψs(ψ, η)))− A(z(ψ, η))| ≤ |g(ψ, η, h(ψs(ψ, η)))− g(ψ, η, h(z(ψ, η)))|

+
∣∣∣∫ ψ

0

∫ η

0

K(ψ, η,m, n, ψs(m,n))dmdn

−
∫ ψ

0

∫ η

0

K(ψ, η,m, n, z(m,n))dmdn
∣∣∣

≤ lg|h(ψs(ψ, η))− h(z(ψ, η))|

+

∫ ψ

0

∫ η

0

|K(ψ, η,m, n, ψs(m,n))

−K(ψ, η,m, n, z(m,n))|dmdn

≤ lglh‖ψs − z‖τeτ(ψ+η)

+

∫ ψ

0

∫ η

0

lK(ψ, η,m, n)|ψs(m,n)− z(m,n)|dmds

≤ lglh‖ψs − z‖τeτ(ψ+η) + l‖ψs − z‖τeτ(ψ+η)

= (lglh + l)‖ψs − z‖τeτ(ψ+η).
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Thus,

‖Aψs − Az‖τ ≤ (lglh + l)‖ψs − z‖τ .(5.10)

From (5.9) and (5.10), we obtain

‖gs − z‖ ≤ (1− βs)‖ψs − z‖+ βs(lglh + l)‖ψs − z‖τ
= [1− βs{1− (lglh + l)}]‖ψs − z‖τ .(5.11)

From (5.11) and (5.8), we get

‖ψs+1 − z‖τ ≤ (lglh + l)4[1− βs{1− (lglh + l)}]‖ψs − z‖τ .(5.12)

Recalling from assumption (C6) that lglh + l < 1 and since βs ∈ [0, 1], then from (5.12) we have

‖ψs+1 − z‖τ ≤ [1− βs{1− (lglh + l)}]‖ψs − z‖τ .(5.13)

Inductively, from (5.13), we have

‖ψs+1 − z‖τ ≤ ‖ψ0 − z‖τ
s∏
k

[1− βk{1− (lglh + l)}].(5.14)

Since βk ∈ [0, 1] for all k ∈ N and assumption (C6) gives

1− βk{1− (lglh + l)} < 1.

From classical analysis, we know that 1− ψ ≤ e−ψ for all ψ ∈ [0, 1]. Thus, (5.14) becomes

‖ψs+1 − z‖τ ≤ ‖ψ0 − z‖τe−[1−βk{1−(lglh+l)}]
∑s

k=0 βk

which yields lim
s→∞
‖ψs − z‖τ = 0. This completes the proof. �

6. Conclusion

In this article, the weak and strong convergence of AI iterative scheme (1.7) has been studied
for a class of mapping which is more general than the class of mapping considered by Ofem and
Igbokwe [32]. An example which has been shown to be a generalized α-noxpansive mapping
has been presented. This example is equally used to compare the rate of convergence of a
number of existing iterative schemes and it was confirmed that AI iterative scheme converges
faster than M, Normal S, Picard S and S iteration schemes. We also showed that AI iteration
converges strongly the unique solution of functional Volterra-Fredholm integral equation with
deviating argument. Hence, our results mainly extend the results of Ofem and Igbokwe [32]
and several other well known results in the literature.
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