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SOME PROPERTIES OF THE UBAT -SPACE AND A RELATED
STRUCTURE

JOEY A. CARAQUIL1, JOEL T. UBAT2, MICHAEL P. BALDADO JR.3,∗,
AND ROSARIO C. ABRASALDO4

Abstract. An Ubat-space is a nonempty set U together with a binary operation ∗ satisfying:
(U1) x∗(y∗z) = (x∗y)∗z for all x, y, z ∈ U ; (U2) There exists y ∈ U such that x∗y = y∗x = y

for all x ∈ U ; And, (U3) There exists z ∈ U such that x ∗ z = z ∗ x = x for all x ∈ U .
A g-group is a nonempty set G together with a binary operation ∗ satisfying: (g1) f ∗(g∗h) =

(f ∗ g) ∗ h for all f, g, h ∈ G; (g2) for each g ∈ G, there is e ∈ G such that g ∗ e = e ∗ g = g (we
call e an identity); and (g3) for each g ∈ G, there exists h ∈ G such that g ∗ h = h ∗ g = e for
some identity e described in (g2).

In this paper, we present some important properties of the two algebraic structures (algebra).

1. Introduction

Let G be a non-empty set. A binary operation in G is a function ∗ : G×G→ G. We denote
the image of (a, b) by a ∗ b or for brevity ab. An algebra (G, ∗) (where ∗ is a binary operation
in G) is a group if the following properties hold: (G1) x ∗ (y ∗ z) = (x ∗ y) ∗ z for all x, y, z ∈ G;
(G2) There exists an element e ∈ G (called an identity element) such that e ∗ x = x ∗ e = x for
all x ∈ G; And, (G3) For each a in G, there is an element a′ in G such that a ∗ a′ = a′ ∗ a = e

(where e is an identity element mentioned in G2).
Let G be a non-empty set. An algebra (G; ∗;A) (where ∗ is a binary operation in G and A is a

non-empty subset of G) is an e-group if the following properties hold: (E1) x∗(y∗z) = (x∗y)∗z
for all x, y, z ∈ G; (E2) For every x ∈ G there exists an element a ∈ A such that x∗a = a∗x = x;
And, (E3) For every x ∈ G there exists an element y ∈ G such that x ∗ y, y ∗ x ∈ A [1].

Let G be a non-empty set. An algebra (G; ∗) (where ∗ is a binary operation in G) is a g-group
if the following properties hold: (g1) f ∗ (g ∗ h) = (f ∗ g) ∗ h for all f, g, h ∈ G; (g2) For each
g ∈ G, there exists an element e ∈ G (called an identity element) such that g ∗ e = e ∗ g = g;
And, (g3) For each g ∈ G, there exists an element h ∈ G (called an inverse of g) such that
g ∗ h = h ∗ g = e for some identity element e.
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For example, the singleton sets {0} and {1} with respect to multiplication × are g-groups as
shown in the Tables 1 and 2.

× 0
0 0

Table 1. The g-group {0}

× 1
1 1

Table 2. The g-group {1}

Similarly, the set {0, 1} is also a g-group under multiplication as shown in Table 3.

× 0 1
0 0 0
1 0 1

Table 3. The g-group {0, 1}

Let U be a non-empty set. An algebra 〈U, ∗〉 (where ∗ is a binary operation in U) is an
Ubat-space if the following properties hold: (U1) x ∗ (y ∗ z) = (x ∗ y) ∗ z for all x, y, z ∈ U ; (U2)
There exists y ∈ U such that x ∗ y = y ∗ x = y for all x ∈ U (we call the element y a zero of
U); And, (U3) there exists z ∈ U such that x ∗ z = z ∗ x = x for all x ∈ U (we call the element
z an identity of U). An Ubat-space is simple if it is finite and if for each x ∈ U , y ∗ x is unique
for all y ∈ U .

For example, the singleton set {0} with respect to multiplication × in the Table 1, the
singleton set {1} with respect to multiplication × in the Table 2 and the set {0, 1} under
multiplication in Table 3 are Ubat-spaces.

Let G be a non-empty set. An algebra (G, ∗) (where ∗ is a binary operation in G) is a
generalized group if the following properties hold: (M1) f ∗(g∗h) = (f ∗g)∗h for all f, g, h ∈ G;
(M2) for each g ∈ G, there exists a unique element e(g) such that g ∗ e(g) = g = e(g) ∗ g; And,
(M3) for each g ∈ G, there exists an element h ∈ G such that g ∗ h = h ∗ g = e(g).

Hereafter, please refer to [2] for the other concepts.
It was not until the early decades of the twentieth century that algebra had evolved into the

study of axiomatic systems referred to as abstract algebra [3]. About three millennia earlier,
algebra only focused on solving polynomial equations. Although early mathematicians started
contemplating on group theory in the late part of the 18th century, major developments in this
area occurred in the 19th century [3].

The term group was introduced by Galois to refer to a collection of permutations that is
closed under composition of functions [3]. Also, the concept implicitly led to the development
of related theories across different branches of mathematics, e.g. Number Theory, Geometry
and Analysis [4].

It was in 1854 when Cayley gave the first definition of a finite group. In such definition,
the closure property, associativity and the notion of cyclic was given emphasis. Moreover,
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Weber provided another definition of groups in 1882 where he asserted three axioms; closure,
associativity and cancellation. By this time, such definition applies only to finite groups.
It was W. von Dyck later that year who consciously combined all major historical roots of
group theory [2]. It was in von Dyck’s definition where the existence of inverses was explicitly
required [3].

From then on, special groups were discovered and gained popularity among mathematicians.
In 1874, Lie introduced his general theory on continuous transformation groups known today
as Lie groups [3]. In 1893, Holder introduced the concept of an automorphism of a group
abstractly. He also introduced the concept of simple groups. In 1897, Dedekind and G.A.
Miller characterized Hamiltonian groups, and non-Abelian groups [3].

Group theory has lots of applications in other areas of mathematics. For instance, in
1961, Grothendieck applied the concepts of group in additive categories and introduced the
Grothendieck group [5], [6]. This was followed by the introduction of the Picard group later
that year also applied in algebraic geometry particularly in smooth variety [2], [7], [8]. These
were the predecessors of the p-Adic group introduced in 2003 [9].

There are also some mathematicians who tried to apply other mathematical principles in
group theory. In 1971, the concept of fuzzy groups was introduced by A. Rosenfeld [10] where
principles of fuzzy sets were applied to the elementary theory of groupoid and groups.

In [11] Molaei introduced generalized groups. And in [12] Molaei et al. studied con-
nected topological generalized groups. They showed that topological generalized groups with
e-generalized subgroups are connected topological generalized groups.

In [13], Zand et al. introduced and studied the notion of a pseudonorm on a generalized
group. And in [14], Aktas and Cagman introduced soft group theory to extend the notion of
a group to include the algebraic structures of soft sets. They also showed that fuzzy groups
may be considered a special case of the soft groups. Moreover, in [1] Saeid et al. introduced
the concept of extended groups (e-groups) by considering a nonempty subset A instead of the
element e.

In this study, we gave some properties of Ubat-spaces and g-groups. These structures may
have important applications in microprocessor design. Specifically, it can be used to minimize
digital circuits. For example, consider the digital circuit with three inputs, A, B, and C, given
by (A ∨ B) ∨ (A ∨ C). By inspection, the expression (A ∨ B) ∨ (A ∨ C) suggest that a digital
circuit needs three AND gates to give the desired output. However, using some properties of
the Ubat-space or the g-group (Z2, ·), the circuit can be minimized as follows. Identifying ·
with ∨, we have (A ∨ B) ∨ (A ∨ C) = (A · B) · (A · C) = [(A ·B) · A] · C = [A · (B · A)] · C =

[A · (A ·B)]·C = [(A · A) ·B]·C = (A·B)·C = (A∨B)∨C. Note that the expression (A∨B)∨C
uses only two AND gates, and still performs the same function as (A ∨ B) ∨ (A ∨ C). This
simplifies the design of the circuit.

2. Ubat-Spaces

2.1. Preliminary Results. In this section, we present the rudimentary properties of Ubat-
spaces.

In the foregoing examples, we see that 〈{0}, ∗〉 and 〈{1}, ∗〉 are Ubat-spaces. We shall call
the two the trivial Ubat-spaces, otherwise an Ubat-space is non-trivial. A moments thought
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one may observe that the identity element and the zero element are distinct in a non-trivial
Ubat-space.

Remarks 2.1 and 2.2 says that a group and an Ubat-space are two different structures.

Remark 2.1. An non-trivial Ubat-space is not a group.

To see this, let 〈U, ∗〉 be an Ubat-space. Then there exist y, z ∈ U such that xy = yx = y and
xz = zx = x for all x ∈ U . Note that if U is non-trivial, then z 6= y. Thus, xy = yx = y 6= z,
that is y has no inverse. Thus, U can not be a group.

For example, consider the Ubat-space 〈{a, b, c, d, e, f}, ∗〉 given in Table 4. Observe that the
elements a has no inverse.

∗ a b c d e f

a a a a a a a

b a b c d e f

c a c e a c e

d a d a d a d

e a e c a e c

f a f e d c b

Table 4. The Ubat-space 〈{a, b, c, d, e, f}, ∗〉

Remark 2.2. An non-trivial group is not an Ubat-space.

To see this, let (G, ∗) be a group. Suppose that there exists 0 ∈ G such that x0 = 0x = 0 for
all x ∈ G. If x and y are distinct elements of G, then 0x = 0 = 0y. By the Cancellation law,
we have x = y. This is a contradiction.

Clearly, an Ubat-space is precisely a group if it is trivial.
An e-group can be constructed from a group. To see this, let (G, ∗) be a group. Then, it is

easy to see that (G; ∗;G) is an e-group.

Remark 2.3. An e-group can be constructed from an Ubat-space.

To see this, let 〈U, ∗〉 be an Ubat-space. Then it is easy to see that (U ; ∗; {0, 1}) is an e-group.
However, an e-group may not be an Ubat-space. To see this, let (G, ∗) be a nontrivial group.

Then, as presented earlier, (G; ∗;G) is an e-group. But by theorem 2.2, a nontrivial group is
not an Ubat-space. Thus, 〈G, ∗〉 is not an Ubat-space.

Remarks 2.4 and 2.5 says that a g-group and an Ubat-space are two different structures.

Remark 2.4. An Ubat-space may not be a g-group.

To see this, consider the Ubat-space 〈{a, b, c, d}, ∗〉 presented in Table 5. Notice that the
element c has no inverse. Thus, 〈{a, b, c, d}, ∗〉 is not a g-group.

Remark 2.5. A g-group may not be an Ubat-space.

To see this, consider the g-group G = {a, b, c, d} presented in Table 6. Note that there is no
element y ∈ G such that xy = yx = y for all x ∈ G. Thus, 〈{a, b, c, d}, ∗〉 is not an Ubat-space.

Remarks 2.6 and 2.7 says that a generalized group and an Ubat-space are two different
structures.

https://doi.org/10.28919/ejma.2021.1.1
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∗ a b c d

a a a a a

b a b c d

c a c a a

d a d c d

Table 5. The Ubat space 〈{a, b, c, d}, ∗〉

∗ a b c d

a a b c d

b b c d a

c c d a b

d d a b c

Table 6. The g-group {a, b, c, d}

Remark 2.6. A generalized group may not be an Ubat-space.

To see this, consider the generalized group in Table 5. Note that there is no element y such
that y × x = y for all x. This implies that there is no zero element.

Remark 2.7. An Ubat-space may not be a generalized group.

To see this, consider the Ubat-space in Table 5. Note that b is the identity, while a× x = a

for all x. This implies that a has no inverse. Infact, only b has an inverse.
Clearly, every group is a generalized group. However, a generalized groups may not be group.

Similarly, it is clear that a generalized group is a g-group, but the converse is false.

Remark 2.8. A g-group may not be a generalized group.

To see this, consider the g-group in Table 3. Note that 1 is the identity, while 0× 0 = 0 and
0× 1 = 0. This implies that 0 has no inverse.

Remark 2.9. A generalized group can be made an e-group.

To see this, let (G, ∗) be a generalized group. It is easy to see that (G; ∗;G) is an e-group.

Remark 2.10. An e-group may not be a generalized group.

To see this, let (G, ∗) be a group that is not a generalized group. Then (G; ∗;G) is an e-group
in which (G, ∗) is not a generalized group.

Figure 1, briefly summarizes the relationship of the different algebraic structure presented in
the foregoing discussions. Solid arcs represent the fact that the family in the tail is a subset
of the one in the head. On the other hand, dashed arcs represent the idea ’can be made’. For
example, a dashed line is drawn from the family of Ubat-spaces to the family of e-groups since,
although Ubat-spaces (G, ∗) and e-groups are non comparable structures, a suitable subset A
from G can be chosen, so that (G; ∗;A) is an e-group.

At this point we present some statements about the zero element. The next theorem says
that an Ubat-space has only one zero element.

Theorem 2.1. Let U be an Ubat-space. Then the zero element of U is unique.

https://doi.org/10.28919/ejma.2021.1.1
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Figure 1. Relationship in terms of set theoretic inclusion of the classes of groups,
g-groups, e-groups, generalized groups and Ubat-spaces

Proof. Suppose that 0 and 0’ are the zero of U . Then 0x = x0 = 0 and 0′x = x0′ = 0′ for all
x ∈ U . Thus, 0 = 00′ = 0′. �

An Ubat-space has only one identity element. The next theorem presents this idea.

Theorem 2.2. Let U be an Ubat-space. Then the identity element of U is unique.

Proof. Suppose that 1 and 1’ are identity elements of U . Then 1x = x1 = x and 1′x = x1′ = x

for all x ∈ U . Thus, 1 = 11′ = 1′. �

Since the identity element and the zero element are unique, we shall denote them by 1U and
0U (or simply 1 and 0, resp.), respectively.

If 〈U, ∗〉 is an Ubat-space and x ∈ U , and if there exists y ∈ U such that xy = yx = 1, then
we say that x is a unit, and we call y the inverse of x.

We observed that the identity element 1U is a unit since 1U = 1U1U = 1U .
A unit has only one inverse. The next theorem presents this idea.

Theorem 2.3. Let U be an Ubat-space. A unit in U has a unique inverse.

Proof. Let a be a unit. Suppose that b and c are inverses of a. Then ab = ba = 1U and
ac = ca = 1U . Thus, b = b1U = b(ac) = (ba)c = 1Uc = c. �

Since the inverse of a is unique, we shall denote it by a−1.
Theorem 2.4 says that the inverse of a unit is a unit.

Theorem 2.4. Let U be an Ubat-space and x be an element of U . If x is a unit, then so is its
inverse. In particular, (x−1)−1 = x.

Proof. Let x ∈ U . Note that xx−1 = x−1x = 1U . Hence, x is the inverse of x−1, that is
(x−1)−1 = x. Thus, x−1 is a unit. �

In an Ubat-space, the product of two units is a unit. The next theorem presents this idea.

Theorem 2.5. Let U be an Ubat-space and x, y ∈ U . If a and b are units, then so is ab. In
particular, (ab)−1 = b−1a−1.

Proof. Let a and b be units. If a and b are units, then there exists x−1, y−1 ∈ U such that
aa−1 = a−1a = 1U and bb−1 = b−1b = 1U . Now, observe that, (ab)(b−1a−1) = [a(bb−1)] a =

(a1U)a
−1 = aa−1 = 1U . Hence, (ab)−1 = b−1a−1. Thus, ab is a unit. �

Theorem 2.6. Let 〈U, ∗〉 be an Ubat-space. If G = {x ∈ U : x is a unit}, then (G, ∗) is a
group.

https://doi.org/10.28919/ejma.2021.1.1


Eur. J. Math. Appl. | https://doi.org/10.28919/ejma.2021.1.1 7

Proof. Let G = {x ∈ U : x is a unit}. Then by Theorem 2.5, G is closed. Moreover, since the
elements of G are elements of U , it follows that G1 holds. Since 1U is a unit, that is 1U ∈ G,
it follows that G2 holds. Finally, since every element of G is a unit, it follows that G3 holds.
Accordingly, (G, ∗) is a group. �

Corollary 2.1 and Corollary 2.2 follows from Theorem 2.6.

Corollary 2.1. Let 〈U, ∗〉 be an Ubat-space, and G = {x ∈ U : x is a unit}. If a and b are
units, then the equations ax = b and xa = b has a unique solution in G.

Corollary 2.2. Let 〈U, ∗〉 be an Ubat-space, and, a, b, and c are units. If ac = bc or ca = cb,
then a = b.

2.2. Subspaces. In this section we present the notion of subspaces of Ubat-spaces. Recall that
〈Uβ, ∗〉 is a subspace of 〈Uα, ∗〉 if: (S1) Uβ ⊆ Uα; And, (S2) 〈Uβ, ∗〉 is an Ubat-space.

Remark 2.11 says that an Ubat-space and its subspace may have different zero elements.
On the other hand, Remark 2.12 says that an Ubat-space and its subspace may have different
identity elements.

Remark 2.11. Let 〈U, ∗〉 be an Ubat-space, and V be a subspace of U . Then 0U may not be in
V .

To see this, consider the Ubat-space of Table 5. Note that {b, d} is a subspace as seen in
Table 7 below. However, its zero is not a (the zero of the larger space) but rather it is d.

∗ b d

b b d

d d d

Table 7. The subspace {b, d} of 〈{a, b, c, d}, ∗〉

Remark 2.12. Let 〈U, ∗〉 be an Ubat-space, and V be a subspace of U . Then 1U may not be in
V .

To see this, consider the Ubat-space of Table 4. Note that {a, c, e} is a subspace as we can
see in Table 8 below. However, its identity is not b (the identity of the mother space) but rather
it is e.

∗ a c e

a a a a

c a e c

e a c e

Table 8. The subspace {a, c, e}

Looking at how an Ubat-space is defined, one may be tempted right away to conclude that
if the zero element and the identity element is in a subset V , then V is a subspace. However,
this is not the case.

https://doi.org/10.28919/ejma.2021.1.1
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Remark 2.13. Let 〈U, ∗〉 be an Ubat-space, and V ⊆ U . Even if 0U , 1U ∈ V , V may still not
be a subspace of U .

To see this, consider the Ubat-space of Table 4. We note that its zero element is a and its
identity element is b. Both a and b are in {a, b, c}, however, refering to Table 9 below, {a, b, c}
is not a subspace since it is not closed.

∗ a b c

a a a a

b a b c

c a c e

Table 9. The Cayley’s table of the subset {a, b, c}

Given the insight that a subspace may have a different zero and identity from the mother
space, the next statement seemed false, however we haven’t found any counter-example yet.
So we express as a conjecture the statement that the intersection of any family of subspaces is
itself a subspace.

Conjecture 2.1. Let 〈U, ∗〉 be an Ubat-space, and {〈Ui, ∗〉 : i ∈ I} be a non-empty family of

subspaces of 〈U, ∗〉. Then
〈⋂
i∈I
Ui, ∗

〉
is a subspace.

2.3. Homomorphism. In this subsection we present the notion of homomorphism of Ubat-
spaces, and gave some of its important properties. We recall that if 〈Uα, ∗α〉 and 〈Uβ, ∗β〉 are
Ubat-spaces, then a function f : Uα → Uβ is a homomorphism if f(a ∗α b) = f(a) ∗β f(b).

Theorem 2.7. Let 〈U1, ∗1〉 and 〈U2, ∗2〉 be Ubat-spaces, and f : U1 → U2 be a homomorphism,
then:

a. f(1U1) = 1U2;
b. If x is a unit, then f(x)−1 = f(x−1); And,
c. f(0U1) = 0U2.

Proof. (a.) Let x ∈ f(U1). Then there exists y ∈ U1 such that f(y) = x. Note that xf(1U1) =

f(y)f(1U1) = f(y1U1) = f(y) = x, and f(1U1)x = f(1U1)f(y) = f(1U1y) = f(y) = x. Hence,
1U2 = f(1U1).

(b.) Let x be a unit of U1. Then there exists x−1 ∈ U1 such that xx−1 = x−1x = 1U1 . Note
that f(x)f(x−1) = f(xx−1) = f(1U1) = 1U2 , and f(x−1)f(x) = f(x−1x) = f(1U1) = 1U2 . Hence,
f(x)−1 = f(x−1).

(c.) Let x ∈ f(U1). Then there exists y ∈ U1 such that f(y) = x. Note that xf(0U1) =

f(y)f(0U1) = f(y0U1) = f(0U1), and f(0U1)x = f(0U1)f(y) = f(0U1y) = f(0U1). Hence,
0U2 = f(0U1). �

The next theorem says that the homomorphic image of a zero is precisely a zero.

Theorem 2.8. Let 〈U1, ∗1〉 and 〈U2, ∗2〉 be nontrivial Ubat-spaces. If f : U1 → U2 is a homo-
morphism, then f(x) = 0U2 if and only if x = 0U1.

https://doi.org/10.28919/ejma.2021.1.1
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Proof. Let a ∈ U1 be a unit. Assume that f(a) = 0U2 and a 6= 0U1 . Then by Theorem 2.7(a)
1U2 = f(1U1) = f(aa−1) = f(a)f(a−1) = 0U2f(a

−1) = 0U2 . This is a contradiction. Therefore,
a = 0U1 .

Conversely, if x = 0U1 , then by Theorem 2.9(3), f(x) = 0U2 . �

The next theorem says that the homomorphic image of a unit is precisely a unit.

Theorem 2.9. Let 〈U1, ∗1〉 and 〈U2, ∗2〉 be Ubat-spaces. If f : U1 → U2 is a monomorphism,
then x is a unit in U1 if and only if f(x) is a unit in U2.

Proof. Let a ∈ U1 be a unit. Then, a ∈ U1 is a unit if and only if there exists a−1 ∈ U1 such
that aa−1 = 1U1 , if and only if f(a)f(a−1) = f(1U1), if and only if f(a)f(a−1) = 1U2 , if and
only if f(a)f(a)−1 = 1U2 , if and only if f(a) is a unit. �

The kernel of a homomorphism f : U1 → U2, denoted by Ker f , is the set of all elements of
U1 mapped to 1U2 . Given Theorem 2.9, the next corollary follows.

Corollary 2.3. Let 〈U1, ∗1〉 and 〈U2, ∗2〉 be Ubat-spaces. If f : U1 → U2 is a monomorphism,
then x ∈ Ker f implies that x is a unit.

2.4. Cyclic Spaces. In this section, we show that if U is a simple Ubat-space, then W =

{0} ∪ {xn : n ∈ Z+} is a subspace.

Remark 2.14. Let U be an Ubat-space and x ∈ U . Then xmxn = xm+n for all m,n ∈ N.

Remark 2.15. Let U be an Ubat-space and x ∈ U . Then (xm)n = xmn for all m,n ∈ N.

Lemma 2.1. Let U be a finite Ubat-space and x ∈ U\{0}. If W ∗ = {xn : n ∈ Z+}, then there
exist positive integers i and j with 1 < i < j such that xi = xj.

Proof. Suppose that xi 6= xj for i 6= j. Then W ∗ = {xn : n ∈ Z+} must be infinite. Thus, it
follows that U is infinite also. This is a contradiction. �

In the sense of Lemma 2.1, we let S = {k ∈ N : k = j − i}. By Lemma 2.1 S 6= ∅. Hence,
by the Well-ordering Principle S has a least element, say m. We will call m the order of W ∗,
denoted by |x| or simply m. Hereafter, the x in W ∗ = {xn : n ∈ Z+} is a non-zero element of
U .

Lemma 2.2. Let U be a finite Ubat-space and W ∗ = {xn : n ∈ Z+} be a subset of order m.
Let i and j (with 1 ≤ i < j) be positive integers such that xi = xj and j − i = m. Then the
elements xi, xi+1, xi+2, . . . , xi+(m−1) are distinct.

Proof. Suppose that there exist positive integers s and t with i ≤ s < t ≤ i+m− 1 such that
xs = xt. Since 1 ≤ t− s ≤ m, this contrary to our choice of m. �

Lemma 2.3. Let U be a finite Ubat-space and W ∗ = {xn : n ∈ Z+} be a subset of order m. Let
i and j (with 1 ≤ i < j) be positive integers such that xi = xj and j − i = m. Then xi+l = xj+l

for l = 1, 2, . . . ,m.

Proof. If xi = xj, then xixk = xjxk for all k ∈ N, that is xi+k = xj+k for all k ∈ N. In particular,
xi+l = xj+l for l = 1, 2, . . . ,m. �
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Corollary 2.4. Let U be a finite Ubat-space and W ∗ = {xn : n ∈ Z+} be a subset of order
m. Let i and j (with 1 ≤ i < j) be positive integers such that xi = xj and j − i = m. Then
xi+l = xi+nm+l for l = 1, 2, . . . ,m, and for all n ∈ N.

Proof. We use induction. For n = 1, we have by Lemma 2.3 xi+l = xj+l for l = 1, 2, . . . ,m.
Hence, the assertion holds n = 1. Setting l = m, we have xi+m = xj+m, this is xi = xj = xi+2m.
By Lemma 2.3 xi+l = xi+2m+l for l = 1, 2, . . . ,m, that is, the assertion holds for n = 2.
Let q ≥ 2 and assume that xi+l = xi+qm+l for l = 1, 2, . . . ,m. By the inductive assumption
xi+(q−1)m+l = xi+l = xi+qm+l, that is xi+(q−1)m+l = xi+qm+l for l = 1, 2, . . . ,m. Setting l = m, we
have xi+qm = xi+(q+1)m. Hence, by Lemma 2.3 again xi+qm+l = xi+(q+1)m+l for l = 1, 2, . . . ,m.
Thus, xi+l = xj+(q+1)m+l for l = 1, 2, . . . ,m. And so, the assertion holds for q + 1. Therefore,
by the Principle of Mathematical Induction the lemma follows. �

Corollary 2.5. Let U be a finite Ubat-space and W ∗ = {xn : n ∈ Z+} be a subset of order m.
Then xi = xi+mn for all n ∈ N.

Proof. In the sense of Corollary 2.4, let l = m. Then by Corollary 2.4, xi = xj = xi+m =

xi+nm+m = xi+(n+1)m = xi+pm for all p ∈ N. � �

Lemma 2.4. Let U be a simple Ubat-space and W ∗ = {xn : n ∈ Z+} be a subset of order m. If
i and j (with 1 ≤ i < j) are positive integers such that xi = xj and j − i = m, then xi−l = xj−l

for l = 1, 2, . . . ,m.

Proof. Suppose that l ∈ {1, 2, . . . ,m} and xi−l 6= xj−l. Since U is simple, xi−lxl 6= xj−lxl, that
is xi 6= xj. This is a contradiction. � �

Corollary 2.6. Let U be a simple Ubat-space and W ∗ = {xn : n ∈ Z+} be a subset of order
m. If i and j (with 1 ≤ i < j) are positive integers such that xi = xj and j − i = m, then
xj−l = xj−nm−l for l = 1, 2, . . . ,m, and for all n with j − (n+ 1)m ≥ 1.

Proof. Proved similarly as Corollary 2.4. � �

Theorem 2.10. Let U be a simple Ubat-space and W ∗ = {xn : n ∈ Z+} be a subset of order
m. If s ≡ t (mod m), then xs = xt.

Proof. Let i and j (with 1 < i < j) be positive integers such that xi = xj and j − i = m.
Without loss of generality, assume that s = i. If s ≡ t(mod m), m|(s − t). Hence, there exist
k ∈ Z such that mk = s− t, that is s = t+mk. Then by Corollary 2.5 xs = xt+mk = xt. �

Theorem 2.11. Let U be a simple Ubat-space and W ∗ = {xn : n ∈ Z+} be a subset of order
m. Then xm is an identity of W ∗.

Proof. Let v ∈ 〈x〉. Then v = xa for some a ∈ N. By the Division Algorithm, a = mq + r

with 0 ≤ r < m. Since m(q + 1) ≡ mq(mod m), we have by Theorem 2.10 vxm = xaxm =

xmq+rxm = xmq+r+m = xm(q+1)+r = xm(q+1)xr = xmqxr = xmq+r = xa = v. Similarly, xmv =

xmxa = xmxmq+r = xm+mq+r = xm(q+1)+r = xm(q+1)xr = xmqxr = xmq+r = xa = v. �

Theorem 2.12. Let U be a simple Ubat-space and x ∈ U\{0}. Then W = {0}∪{xn : n ∈ Z+}
is a subspace of U .
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Proof. Let x, y ∈ W . If x = 0, then xy = 0 ∈ W . If x 6= 0 and y 6= 0, then x = xs and y = xt

for some s, t ∈ N. Thus, xy = xsxt = xs+t ∈ W . Therefore, W is closed. Next, observe that
x0 = 0x = 0 for all x ∈ W . Hence, the zero element is 0. If m is the order of W\{0}, then
by Theorem 2.11, xm is the identity element of W\{0}, and must be the order of W . Finally,
since W ⊆ U , the operation must be associative in W . Accordingly, W is a subspace of U . �

The subspace W = {0} ∪ {xn : n ∈ Z+} is called the cyclic subspace of U generated by x,
denoted by 〈x〉. An element x of an Ubat-space U generates U if 〈x〉 = U . In this case, the
element x is called the generator of U .

2.5. Normal Spaces. In this section, we present a First Isomorphism Theorem for Ubat-
spaces.

Remark 2.16. Let U be an Ubat-space and T be a normal subspace of U . If V is a subspace
of U with T ⊆ V , then T is a normal subspace of V .

To see this, let T be a normal subspace of U . Tthen xT = Tx for all x ∈ U . Since V ⊆ U ,
xT = Tx for all x ∈ U . Since T is a subspace of V , T is also a normal subspace of V .

Theorem 2.13. Let U be an Ubat-space and T be a normal subspace of U . If U/T is the set
of all left cosets of T in U , then U/T is an Ubat-space with xT ∗ yT = xyT .

Proof. Let x, y ∈ U . Since U is an Ubat-space, xy ∈ U . Hence, xTyT = xyT ∈ U/T . This
shows that U/T is closed. Next, let x, y, z ∈ U . Since U is an Ubat-space, x(yz) = (xy)z.
Hence, xT (yTzT ) = xT (yzT ) = x(yz)T = (xy)zT = (xyT )zT = (xTyT )zT . Thus, the
operation is associative. Next, let 0 be the zero element of U . Then 0x = x0 = 0 for all x ∈ U .
Hence, 0TxT = 0xT = 0T = {0} = 0T = x0T = xT0T for all x ∈ U . Thus, the zero of
U/T is {0}. Finally, let 1 be the identity of U . Then 1x = x1 = x for all x ∈ U . Observe
that 1TxT = 1xT = xT = x1T = xT1T for all x ∈ U . Thus, the identity of U/T is 1T = T .
Accordingly, U/T is an Ubat-space. �

Theorem 2.14. Let U and V be Ubat-spaces. If f : U → V is a monomorphism, then the
kernel of f is a normal subspace of U .

Proof. Let x ∈ U . We show that xKerf = Kerf x. If z ∈ xKerf , then z = xy for some
y ∈ Kerf . Hence, f(z) = f(xy) = f(x)f(y) = f(x)1 = 1f(x) = f(y)f(x) = f(yx). Since f is a
monomorphism, z = yx. Thus, z = yx ∈ Kerfx. On the other hand, if w ∈ Kerfx, then w = yx

for some y ∈ Kerf . Hence, f(w) = f(yx) = f(y)f(x) = 1f(x) = f(x)1 = f(x)f(y) = f(xy).
Since f is a monomorphism, w = xy. Thus, w = xy ∈ xKerf . This shows that Kerf is
normal. �

Theorem 2.15. Let U be an Ubat-space. If T is a normal subspace of U , then the map
µ : U → U/T given by x 7→ xT is an epimorphism with kernel T .

Proof. Let x, y ∈ U . Then µ(xy) = xyT = xTyT = µ(x)µ(y). This shows that µ is a
homomorphism. Next, we show that µ is surjective. Clearly, µ(U) ⊆ U/T . Let xT ∈ U/T , and
consider x (which is in U). Observe that µ(x) = xT , that is xT ∈ µ(U). Hence, µ(U) ⊇ U/T .
Thus, µ(U) = U/T , that is µ is an epimorphism. Finally, x ∈ T if and only if µ(x) = xT = T

if and only if x ∈ Kerµ. Thus, Kerµ = T . �
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Theorem 2.16. (First Isomorphism Theorem) Let U and V be Ubat-spaces. If f : U → V be
a monomorphism, then f induces an isomorphism U/Kerf ∼= Imf .

Proof. Define µ(U) : U/Kerf → Imf by xKerf = f(x). Let u, v ∈ U/Kerf . Then there exists
x, y ∈ U such that u = xKerf and v = yKerf . Thus, µ(uv) = µ(xKerf yKerf) = µ(xyKerf) =
f(xy) = f(x)f(y) = µ(xKerf)µ(yKerf) = µ(u)µ(v). This shows that µ is a homomorphism.
Next, we show that µ is injective. Let u, v ∈ U/Kerf such that µ(u) = µ(v). If u, v ∈ U/Kerf ,
then there exists x, y ∈ U such that u = xKerf and v = yKerf . If µ(u) = µ(v), then
µ(xKerf) = µ(yKerf), that is f(x) = f(y). This implies that x = y. Thus, xKerf = yKerf ,
that is u = v. This shows that µ is injective. Lastly, we show that µ is surjective. Let
w ∈ Imf . Then there exists x ∈ U such that w = f(x). Now, consider xKerf . Observe that
µ(xKerf) = f(x) = w. This shows that µ is surjective. Accordingly, µ is an isomorphism, that
is U/Kerf ∼= Imf . �

3. g-Groups

This section presents some important properties of g-groups. We note that a g-group can
have two or more identity elements. To see this, consider the g-group {0, 1}. Note that both
elements are identity.

The set of all real numbers R is a g-group with respect to multiplication. To see this, we
must be able to show that R together with multiplication satisfies g1, g2, and g3. Clearly, g1
holds. To show g2, let g ∈ R. If g = 0, then we take e = 0. Note that ge = eg = 0(0) = 0 = g.
On the other hand, if g 6= 0, then we take e = 1. Note that ge = g(1) = g and eg = 1(g) = g.
Thus, in each case, there exist e ∈ R such that ge = eg = g. This shows g2. Finally, to show
g3, we again let g ∈ R. If g = 0, then consider h = 0. Note that gh = hg = 0(0) = 0 = e.
On the other hand, if g 6= 0, then we consider h = 1/g. Note that gh = g(1/g) = 1 = e and
hg = (1/g)g = 1 = e. Thus, in each case, there exist h ∈ R such that gh = hg = e for some
identity e. This shows g3.

It is easy to see that a group is a g-group. However, the converse of is not true. The next
remark presents this idea.

Remark 3.1. A g-group may not be a group.

To see this, we note that the set of all real numbers R is a g-group with respect to multipli-
cation. However, it is not a group since the element 0 has no multiplicative inverse.

Remark 3.2. A g-group can be made an e-group.

To see this, let G be a g-group under a binary operation ∗, and let A be the set of all identity
elements. It is easy to see that (G; ∗;A) is an e-group.

Remark 3.3. An e-group is not necessarily a g-group.

To see this, consider the e-group ({a, b, c, d}; ∗; {a, b}) of Example 2.5 in [1]. Note that
({a, b, c, d}, ∗) does not satisfy g3 since the element c has no inverse.

Remark 3.4. A simple e-group is not necessarily a g-group.
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∗ a b c d

a a a a a

b a b c d

c a c a a

d a d c d

Table 10. The e-group ({a, b, c, d}; ∗; {a, b})

∗ a b c d

a a a c d

b a b c d

c c c d c

d d d c c

Table 11. The simple e-group ({a, b, c, d}; ∗; {a, b})

To see this, we may consider the simple e-group ({a, b, c, d}; ∗; {a, b}) is presented in Table
11. Note that the elements c and d have no inverse, hence it doe not satisfy g3.

The identity element and inverse element may not be unique. For example, consider the
g-group R under multiplication. Note that each element in R is an identity and an inverse of 0.

If G be a g-group, then we will call an element of G having a unique identity element a unit.
In this case, we denote by ea the identity element of a. For example, in the g-group R under
multiplication. All the elements of R except 0 is a unit. Note that 0 is not a unit since it has
many identity elements, in fact all the real numbers is its identity.

Lemma 3.1. Let G be a g-group and x ∈ G. If x is a unit, then so is any inverse y of x. In
particular, ex = ey.

Proof. Let ex be the identity of x, and ey be an identity of y. Suppose ex 6= ey. Since x
has a unique identity, xey 6= x . Since x = xex, xey 6= xex. Thus, (xex)ey 6= x(xy). But
(xex)ey = [x(xy)] ey = (xx)(yey) = (xx)y = x(xy). Hence, (xex)ey 6= (xex)ey. This is a
contradiction. Therefore, we must have ex = ey. �

The inverse of a unit is unique. This idea is presented in the next theorem.

Theorem 3.1. A unit has a unique inverse.

Proof. Let G be a g-group and x be a unit. Suppose that y and z are inverse of x. Then by
Theorem 3.1, y = yey = yex = y(xz) = (yx)z = exz = ezz = z. �

Since the inverse of a unit x is unique, we may now denote it by x−1.
The converse of Theorem 3.1 is not true. To see this consider the g-group S6 = {0, 1, 2, 3, 4, 5}

given in Table 12. Note that 4 has a unique inverse (which is itself) but is not a unit.
The next statement says that the inverse of the inverse of a unit is the unit itself.

Corollary 3.1. Let G be a g-group and x ∈ G. If x is a unit, then (x−1)−1 = x.

Proof. If x is a unit, then by Lemma 3.1, xx−1 = x−1x = ex = ex−1 . Hence, x is an inverse
of x−1. By Lemma 3.1, x−1 is a unit. Thus, by Theorem 3.1, the inverse of x−1 is unique.
Therefore, (x−1)−1 = x. �
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×6 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

Table 12. The g-group S6 = {0, 1, 2, 3, 4, 5}

The next theorem says that two units have the same inverse precisely when the two are equal.

Theorem 3.2. Let G be a g-group. If x and y are units, then x−1 = y−1 if and only if x = y.

Proof. If x−1 = y−1, then (x−1)−1 = (y−1)−1. By Corollary 3.1, x = y. The converse follows
immediately from Lemma 3.1 and Theorem 3.1. �

The next theorem says that cancellation law also holds in g-groups under some conditions.

Theorem 3.3. Let G be a g-group and x, y, z ∈ G be units with ex = ey = ez. If xy = xz and
yx = zx, then y = z.

Proof. If xy = xz, then y = eyy = exy = (x−1x)y = x−1(xy) = x−1(xz) = (x−1x)z = exz =

ezz = z. The second equation is proved similarly. �

The identity of an identity is itself. This is presented in the next theorem.

Theorem 3.4. Let G be a g-group and x ∈ G. If x is a unit, then (ex)
n = ex for all positive

integer n.

Proof. For n = 1, we have (ex)
1 = ex. Let k ≥ 1, and assume that (ex)

k = ex. Then
(ex)

k+1 = (ex)
kex = exex = (ex)

2. But, (ex)
2x = (exex)x = ex(exx) = exx = x. Hence,

(ex)
k+1 = ex. By the Principle of Mathematical Induction the theorem follows. �

Corollary 3.2 and Corollary 3.3 follows from Theorem 3.4.

Corollary 3.2. Let G be a g-group and x ∈ G. If x is a unit, then eex = ex and (ex)
−1 = ex.

Corollary 3.3. Let G be a g-group and x ∈ G. If x is a unit, then ex is a unit.

3.1. Abelian g-groups. An g-group G is Abelian if for all x, y ∈ G, we have xy = yx. For
example, R is an Abelian g-group under multiplication.

It is clear that if G is an Abelian g-group and a is a unit, and if ae = a, then e = ea. This
idea is used in the next theorem.

Theorem 3.5. Let G be an Abelian g-group and a, b ∈ G. If x and y are identity elements of
a and b, respectively, then xy is an identity of ab. In particular, if a, b, and ab are units, then
eab = eaeb.

Proof. Let a, b ∈ G, and, x and y be identity elements of a and b, respectively. Since G is
Abelian, (ab)(xy) = (ax)(by) = ab = (xa)(yb) = (xy)(ab). Hence, xy is an identity of ab. �
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Note that if G be an Abelian g-group and a is a unit, and if ab = ea, then a−1 = b. This idea
is used in the next theorem.

Theorem 3.6. Let G be an Abelian g-group and a, b ∈ G. If a, b, and ab are units, then
(ab)−1 = a−1b−1.

Proof. By Theorem 3.5, we have (ab)(a−1b−1) = (aa−1)(bb−1) = eaeb = eab. Hence, (ab)−1 =

a−1b−1. �

Let G be a g-group, and H = {h ∈ G : h is a unit}. We say that H has a unique identity if
the following condition holds: a, b ∈ H implies that ea = eb. Let Zn be the g-group of integers
modulo n under multiplication, and H = {x ∈ Zn : x is a unit}. Then H has a unique identity.
To see this, we observe that 1 is a common identity. Hence, if x is a unit, then 1 must be its
only identity.

Let G be a g-group and x ∈ G. Then x is called a zero of G if xy = yx = x for all y ∈ G.
Clearly, 0 is not a unit. If Zn is the g-group of integers modulo n under multiplication. Then
the element 0 is is the zero of Zn.

Theorem 3.7 says that if H = {h ∈ G : h is a unit} has a unique identity, then a linear
equation has a unique solution in H.

Theorem 3.7. Let G be an Abelian g-group, and H = {h ∈ G : h is a unit}. If H has a unique
identity, then the linear equations ax = b and xa = b has a unique solution in H.

Proof. We have ax = b if and only if a−1(ax) = a−1b if and only if (a−1a)x = a−1b if and only
if ex = a−1b if and only if x = a−1b. This shows that x = a−1b is a unique solution to ax = b.
The second is proved similarly. �

A cancellation law also holds in g-groups under certain conditions.

Theorem 3.8. Let G be an Abelian g-group, and H = {h ∈ G : h is a unit} has a unique
identity element. If a ∈ H and, ab = ac or ba = ca, then b = c.

Proof. Let a, b, c ∈ H with ab = ac. If ab = ac, then b is a solution to the equation ax = ac.
Since ac = ac, c is also a solution to the equation ax = ac. Now by Theorem 3.7, we must have
b = c. The second is proved similarly. �

Even if x is not a unit, only one of its identity gives an inverse. The next theorem crystallize
this idea.

Theorem 3.9. Let G be an Abelian g-group and H = {h ∈ G : h is a unit}. If x ∈ G\H, then
x has only one identity element e such that there exists y with xy = e.

Proof. Let x ∈ G\H, and, e1 and e2 be distinct identities of x. Suppose that xy = e1 and
xz = e2. Then xy 6= xz. Hence, (xe2)y 6= (xe1)z. Thus, [x(xz)] y 6= [x(xy)] z. This is a
contradiction. �

Although only one identity produce an inverse, Theorem 3.9 does not imply that there is
only one inverse. Consider the g-group S6 = {0, 1, 2, 3, 4, 5} under multiplication modulo 6 of
Table 12. Observe that 2 have two identity elements, namely, 1 and 4. Now, only one of them
has an inverse, only 4. However, there are two inverses which corresponds to 4, namely 2 and
5.
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Remark 3.5 says that elements with identity e are contained inH = {h ∈ G : h is a unit, and
eh = e}, while Theorem 3.10 says that the inverse of the elements of H = {h ∈ G : h is a unit}
are in H.

Remark 3.5. Let G be an Abelian g-group, e be an identity element, and H = {h ∈ G :

h is a unit, and eh = e}. If x ∈ G and ex = e, then x ∈ H.

Theorem 3.10. Let G be an Abelian g-group and H = {h ∈ G : h is a unit}. If H is a trunk
(in which the identity of the elements is e) and xy = e, then y ∈ H.

Proof. Let x ∈ G and xy = e. Suppose that xe′ = x. Then e′e = e′(xy) = (e′x)y = xy = e.
Hence, e′ is an identity of e. Since e is a unit and e2 = e, we must have e′ = e. Therefore,
x ∈ G. �
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